Exam \#4

April 19, 2019

Name

\qquad

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of " 0 " will be assigned to anyone who opens a cell phone during the examination or if one is found on their seat or hand.

No calculators are allowed!

1. (4 pts) We learned that the derivative of $\ln (x)$ is $\frac{1}{x}$. Does this information help us to find the integral of $\ln (x)$? If yes, then explain why/how and if no, then explain what we can imply from this information.
2. (6 pts each) Find the indefinite integral.
(a) $\int 1+x^{2} \mathrm{~d} x$
(b) $\int e^{3 t}\left(e^{t}-2\right) \mathrm{d} t$
(c) $\int \frac{\sqrt{x}-x^{3}+1}{x} \mathrm{~d} x$
3. (8 pts each) Find the indefinite integral
(a) $\int x \sqrt{5 x^{2}-3} \mathrm{~d} x$
(b) $\int x e^{x^{2}-1} \mathrm{~d} x$
(c) $\int \frac{2 \ln (x)}{x} \mathrm{~d} x$
4. (8 pts) Solve the given initial value problem for $y=f(x)$.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{x}-\frac{1}{x^{2}} \text { where } y=-1 \text { when } x=1
$$

5. (8 pts each) Evaluate the integral and simplify your answer.
(a) $\int_{0}^{1} \sqrt{u} \mathrm{~d} u$
(b) $\int_{1}^{3} \frac{x-3}{\left(x^{2}-6 x\right)^{2}} \mathrm{~d} x$
(c) $\int_{0}^{2}(2 x-3)^{3} \mathrm{~d} x$
6. (8 pts) A manufacturer estimates that the marginal cost of producing q units of a certain commodity is $C^{\prime}(q)=3 q^{2}-12 q+12$ dollars per unit. If the cost of producing 1 unit is $\$ 20$, what is the cost of producing 5 units? [You can leave your answer in calculator ready form. No simplification is necessary.]
7. (8 pts) Use the information below to evaluate the integrals:

$$
\int_{1}^{5} f(x) \mathrm{d} x=3, \quad \int_{3}^{5} f(x) \mathrm{d} x=-2, \quad \int_{1}^{5} g(x) \mathrm{d} x=-1
$$

(a) $\int_{1}^{5} 2 f(x)-g(x) \mathrm{d} x$
(b) $\int_{1}^{3} f(x) \mathrm{d} x$
8. (4 pts) Determine if the following statement is true or false. Support your answer. (true / false)

$$
\int \frac{x^{2}}{x-1} \mathrm{~d} x=\frac{\frac{1}{3} x^{3}}{\frac{1}{2} x^{2}-x}+C
$$

9. (4s pts) Verify that $\int \ln (x) \mathrm{d} x=x \ln (x)-x+C$

Use this page if you need additional space.

