MAC 1105, Fall 2017.

Exam #1

October 3, 2017

Name _____

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of "0" will be assigned to anyone who uses a cell phone during the examination or if one is found within hands reach.
- Calculators are not allowed on this exam.
- The exam consists of two parts. Part I contains four multiple choice questions worth 5 points each. Part II contains 8 open ended questions.

Part I

Choose your answer from five available choices. No partial credit will be given for wrong answers.

- 1. Simplify $\frac{\sqrt{12x^2}}{6x^2}$
 - (a) $\frac{2}{1}$
 - $\underbrace{\text{(b)}}_{3x} \frac{\sqrt{3}}{3x}$
 - (c) $\frac{\sqrt{12}}{6}$
 - (d) $\sqrt{3}$
 - (e) None of the above
- 2. Divide the following complex numbers and express the result in standard form, a + bi.

(a)
$$\frac{4-7i}{5}$$

(b)
$$-\frac{8}{5} + \frac{7}{5}i$$

(c)
$$-4 + 7i$$

$$(d)$$
 $-\frac{4}{5} + \frac{7}{5}i$

(e) None of the above

$$\frac{2i-3}{2+i} \cdot \frac{2-i}{2-i} = \frac{4i-2i^2-6+3i}{4-i^2}$$

$$= \frac{4i-2(7)-6+3i}{4-(-1)} = \frac{4i+2-6+3i}{4+1}$$

$$= \frac{7i-4}{5} = \frac{-4}{5} + \frac{7}{5}i$$

 $\frac{\sqrt{12 \times^2}}{6 \times^2} = \frac{\sqrt{4} \cdot \sqrt{3} \cdot \sqrt{x^2}}{6 \times^2} = \frac{2\sqrt{3} \cdot x}{6 \times^2} = \frac{\sqrt{3}}{3x}$

3. Find the solution set for the equation

(a)
$$\{1+3i, 1-3i\}$$

(b)
$$\{3i+1, 3i-1\}$$

(c)
$$\{1+3i\}$$

- (d) The solution set is empty.
- (e) None of the above

$$(x-1)^2 = -9$$

$$x-1 = \pm \sqrt{-9}$$

$$x-1=\pm i\sqrt{9}=\pm i.3$$

4. Determine the number and type of solutions for the following equation

$$x^2 - 3x + 5 = 0$$

discriminant: $(-3)^2 - 4 \cdot 1.5 = 9 - 20 = -11 < 0$

- (a) One real solutions.
- (b) Two real solution.
- (c) Two complex solutions.
- (d) Three radical solutions.
- (e) None of the above.

Part II

- 5. (10 points) Consider the points (1,6) and (4,2). Draw a squid or octopus that has
 - (a) The number of arms the same as the distance between the points.
 - (b) The number of eyes the same as the y-coordinate of the midpoint.

(b) The number of eyes the same as the y-coordinate of the midpoint.
(a) distance =
$$\sqrt{(1-4)^2+(6-2)^2} = \sqrt{9+16} = \sqrt{25} = \sqrt{5}$$

(b) midpoint =
$$\left(\frac{1+4}{2}, \frac{6+2}{2}\right) = \left(\frac{3}{2}, 4\right)$$

 y -coordinate = $\left(\frac{4}{2}, \frac{3}{2}\right)$

6. (10 points each) Solve for
$$x$$
 and include any complex solutions.

(a)
$$\sqrt{2x-1}+2=x$$

$$-2 -2$$

$$\sqrt{2x-1} = x-2$$

$$(\sqrt{2x-1})^{2} (x-2)^{2}$$

$$2x-1 = x^{2}-4x+4$$

$$-2x+1 -2x+1$$

$$0 = x^{2}-6x+5$$

$$0 = (x-5)(x-1)$$

$$x=5 x=1$$

Test,
$$X=5$$
, $X=5$, $X=1$, X

(b)
$$2x^2 - x = 1$$

$$2x^{2}-x-1=0$$

$$x = \frac{-(-1) \pm \sqrt{(-1)^{2}-4\cdot 2\cdot (-1)}}{2\cdot 2} = \frac{1 \pm \sqrt{1+8}}{4} = \frac{1 \pm \sqrt{9}}{4}$$

$$= \frac{1 \pm 3}{4} = \frac{4}{4} = \frac{1}{2}$$

7. (5 points) Let
$$f(x) = 2 + 3\sqrt{1-x}$$
 and $h(x) = \frac{2x}{x-3}$

(a) Find
$$f(1)$$

$$h(6) = \frac{2.6}{6-3} = \frac{12}{3} = \frac{14}{4}$$

8. (10 points) Consider the following function.

(a) Find the domain and range of the graph of the function.

Dom: [-4,6] (2 angl: [-2,4]

(b) Find
$$f(2)$$
 and $f(-4)$.
$$f(2) = 2$$

$$f(-4) = -2$$

9. (15 points) Consider the line 6x - 3y + 4 = 0 and

The given line.

$$6x-3y+4=0$$
 $-6x-4$
 $-6x-4$
 $-3y=-6x-4$
 $y=\frac{-6}{3}x+\frac{-4}{3}=\overline{2}x+\frac{4}{3}$

(b) Find the equation of the line that is perpendicular to the given line and passes though the point (4, 1). Find the y-intercept of this line.

$$m = \frac{-1}{2}$$

$$y - 1 = \frac{1}{2}(x - t)$$

$$y = -\frac{1}{2}x + \frac{t}{2}t$$

$$y = -\frac{1}{2}x + 3$$

$$y = -\frac{1}{2}x + 3$$

$$y = -\frac{1}{2}x + 3$$

10. (10 points) Consider the circle given by

$$x^2 + y^2 - 4x - 12y - 9 = 0$$

Draw an alien that has:

- (a) The number of hands the same as the circle's radius.
- (b) The number of legs the same as circle's center y-coordinate.
- (c) The number of eyes the same as circle's center x-coordinate.

(c) The number of eyes the same as circle's center x-coordinate.

$$\begin{array}{lll}
\times^{2} - (+x+(-2)^{2} + y^{2} - 12 + y^{2} - 12 + y^{2} - 12 + y^{2} + y^{2} - y^{2} - y^{2} + y^{2} - y^{2}$$

- (a) radius = 5x9 = 7
- (6) y-coordinate: [6]
- (c) x-coordinate: 2

11. (5 points) Simplify

$$\sqrt{40} + 3\sqrt{10}$$

$$\sqrt{40 + 3\sqrt{10}} = \sqrt{4 \cdot \sqrt{10} + 3\sqrt{10}} = 2\sqrt{10} + 3\sqrt{10}$$

$$\frac{\frac{x}{x-2}+1}{\frac{3}{x^2-4}+1} = \frac{\frac{x}{x-2}+1}{\frac{3}{x^2-4}+1} = \frac{\frac{x}{x-2}+1}{\frac{3}{(x-2)(x+2)}+1}$$

$$= \frac{\frac{x}{x-2} + \frac{x-2}{x-2}}{\frac{3}{(x-2)(x+2)} + \frac{(x-2)(x+2)}{(x-2)(x+2)}} = \frac{\frac{x^2-4}{x-2}}{\frac{3+(x-2)(x+2)}{(x-2)(x+2)}}$$

$$= \frac{2 \times -2}{x-2} = \frac{2 \times -2}{3+x^2-4} = \frac{2 \times -2}{(x-2)(x+2)} = \frac{2(x-2)(x+2)}{(x-2)(x+2)} = \frac{2(x-2)$$

$$= \frac{(2x-2)(x+2)}{x^2-1} = \frac{2(x+2)}{(x+1)} = \frac{2(x+2)}{x+1}$$