MAC 1105, Fall 2017

Exam #2

October 24, 2017

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of "0" will be assigned to anyone who uses a cell phone during the examination or if one is found within hands reach.
- Calculators are not allowed on this exam.
- The exam consists of two parts. Part I contains four multiple choice questions worth 5 points each if not stated otherwise. Part II contains 7 open ended questions worth 10 points each if not stated otherwise.

Honor Code: On my honor, I have neither received nor given any aid during this examination.

Si	gnature:	

Part I

Choose your answer from five available choices. No partial credit will be given for wrong answers.

- 1. The function f(x) is even if
 - (a) f(-x) = -f(x)
 - $\widehat{\text{(b)}} f(-x) = f(x)$
 - (c) f(x) is a polynomial.
 - (d) f(x) contains only even numbers
 - (e) None of the above
- 2. Find the domain of

$$g(x) = \frac{(x-2)}{(x-2)(x+3)}$$

- $(a) (-\infty, -3) \cup (-3, 2) \cup (2, \infty)$
- (b) $(-\infty, -3) \cup (-3, \infty)$
- (c) $(-\infty, -3) \cap (-3, \infty)$
- (d) $(-\infty, -3) \cup (-3, 2] \cup [2, \infty)$
- (e) None of the above
- 3. Find f(3) of the following piecewise function

$$f(x) = \begin{cases} 4, & \text{if } x < 0 \\ -x, & \text{if } 0 \le x < 3 \\ x^2 - x + 3, & \text{if } x \ge 3 \end{cases}$$

- (a) f(3) = -3
- (b) f(3) = 6
- (c) f(3) = 9
- (d) f(3) = 4
- (e) None of the above.

4. (10 points) Match each function with a graph. [Hint: One graph can be used multiple times.]

(a)
$$f(x) = \sqrt{-x}$$

(b)
$$f(x) = \sqrt{x}$$

(c)
$$f(x) = (-x)^3$$

(d)
$$f(x) = -x^3$$

Part II

5. Find the domain of the function.

(a)
$$f(x) = \frac{x-2}{x+1} - \frac{2}{x-4}$$

$$= \frac{1}{x+1} - \frac{1}{x-4}$$

$$\times t \neq 0$$

(-00,-1)U(-1,4)U(4,0)

(b)
$$f(x) = x^2 - 3x + 5$$

The domain of a polynomial is (-∞,∞)

6. (15 points) Consider the following function.

(a) Find the domain and range of the graph of the function.

Domain: $(-\infty, \infty)$

Range: $[0, \infty)$

(b) Is f odd, even, or neither?

neither

(c) Determine the intervals on which f is decreasing.

 $(-\infty,0)$

(d) Determine the intervals on which f is increasing.

(0,2)

(e) Find relative maxima or minima.

X=0 or (0,0) is a rel. minimum
there is no rel. maximum

7. (15 points) The graph of a function y = f(x) is given below. Use transformations to graph y = 2f(-x+1) - 2. List the transformations needed (use proper names!) and graph each intermediate graph on the grid provided. Be accurate!

(i) transformation: hor shiff y= f(x+1) right by

8. A point (4,-1) is on the graph of a function y=f(x). What point will be on the graph of y=-f(x+1)+1?

- 9. Let $f(x) = x^2 2x$ and g(x) = 3x. Find and simplify the following.
 - (a) (f+g)(x)

$$\times^2 - 2 \times + 3 \times = \boxed{\times^2 + \times}$$

(b)
$$\left(\frac{f}{g}\right)(x)$$
 $\times \frac{2-2}{3} \times \frac{2}{3} \times$

10. Determine if the following function is odd, even, or neither.

$$f(x) = \frac{x^3}{x^2 - 1}$$

$$f(-x) = \frac{(-x)^3}{(-x)^2-1} = \frac{-x^3}{x^2-1} = -f(x)$$

11. (15 points) Graph the function $f(x)=\left\{\begin{array}{ll} 2-x & , \text{ if } x<2\\ 0 & , \text{ if } 2\leq x\leq 3\\ (x-2)^2 & , \text{ if } x>3 \end{array}\right.$

