MAC 1105, Fall 2017.

Exam #2

October 24, 2017

Name (e)

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of "0" will be assigned to anyone who uses a cell phone during the examination or if one is found within hands reach.
- Calculators are not allowed on this exam.
- The exam consists of two parts. Part I contains four multiple choice questions worth 5 points each if not stated otherwise. Part II contains 7 open ended questions worth 10 points each if not stated otherwise.

Honor Code: On my honor, I have neither received nor given any aid during this examination.

Si	gnature:	

Part I

Choose your answer from five available choices. No partial credit will be given for wrong answers.

- 1. The function f(x) is even if
 - (a) f(x) is a polynomial.
 - (b) f(-x) = -f(x)
 - (c) f(-x) = f(x)
 - (d) f(x) contains only even numbers
 - (e) None of the above
- 2. Find the domain of

$$g(x) = \frac{(x-2)}{(x-2)(x+3)}$$

- (a) $(-\infty, -3) \cup (-3, \infty)$
- (b) $(-\infty, -3) \cup (-3, 2) \cup (2, \infty)$
- (c) $(-\infty, -3) \cap (-3, \infty)$
- (d) $(-\infty, -3) \cup (-3, 2] \cup [2, \infty)$
- (e) None of the above
- 3. Find f(3) of the following piecewise function

$$f(x) = \begin{cases} 4, & \text{if } x < 0 \\ -x, & \text{if } 0 \le x < 3 \\ x^2 - x + 3, & \text{if } x \ge 3 \end{cases}$$

- (a) f(3) = 9
- (b) f(3) = 4
- (c) f(3) = -3
- (d) f(3) = 6
- (e) None of the above.

4. (10 points) Match each function with a graph. [Hint: One graph can be used multiple times.]

(a)
$$f(x) = -\sqrt{x}$$

(b)
$$f(x) = (-x)^3$$

(c) $f(x) = \sqrt{-x}$

$$D - 2$$

(d)
$$f(x) = -x^3$$

(2)

(5)

(6)

Part II

5. Find the domain of the function.

(a)
$$f(x) = \frac{x-2}{x-1} - \frac{2}{x+4}$$

$$\times$$
 \neq 1

$$\times \neq -\psi$$

(b) $f(x) = x^2 - 3x + 5$

The domain of a polynomial is (-∞,∞)

6. (15 points) Consider the following function.

(a) Find the domain and range of the graph of the function.

Domain:
$$(-\infty, \infty)$$

Range: $[0, \infty)$

(b) Is f odd, even, or neither?

(c) Determine the intervals on which f is decreasing.

$$(-\infty_l 0)$$

(d) Determine the intervals on which f is increasing.

(e) Find relative maxima or minima.

7. (15 points) The graph of a function y = f(x) is given below. Use transformations to graph y =-f(2x-1)+3. List the transformations needed (use proper names!) and graph each intermediate graph on the grid provided. Be accurate!

(i) transformation:
$$hov. shiff$$

$$right by 1$$

$$y = f(x-1)$$

(ii) transformation: hor. shrink by factor of 2

- (iii) transformation: reflection about the x-axis

$$y = - f(2 \times -1) + 3$$

8. A point (4,-1) is on the graph of a function y=f(x). What point will be on the graph of y=2f(-x+1)+1?

- 9. Let $f(x) = x^2 2x$ and g(x) = 3x. Find and simplify the following.
 - (a) (f+g)(x)

$$\times^2$$
-2×+3×= \times^2 +×

(b)
$$\left(\frac{f}{g}\right)(x)$$

$$\times \frac{2}{3} \times \frac{2}{3} \times$$

10. Determine if the following function is odd, even, or neither.

$$f(x) = \frac{3x^2 + 1}{x}$$

$$f(x) = \frac{3(-x)^2 + 1}{x}$$

$$= \frac{3 \times 2 + 1}{-x} = - f(x)$$

$$= - f(x)$$

$$= - f(x)$$

11. (15 points) Graph the function $f(x)=\left\{\begin{array}{ll} x-2 & \text{, if } x<2\\ 1 & \text{, if } 2\leq x\leq 3\\ (x-2)^2 & \text{, if } x>3 \end{array}\right.$

