MAC 1105, Fall 2017

Exam #3

November 14, 2017

Name			

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of "0" will be assigned to anyone who uses a cell phone during the examination or if one is found within hands reach.
- Calculators are not allowed on this exam.
- The exam consists of two parts. Part I contains five multiple choice questions worth 5 points each if not stated otherwise. Part II contains 7 open ended questions worth 10 points each if not stated otherwise.

Honor Code: On my honor, I have neither received nor given any aid during this examination.

Signature:

Part I

Choose your answer from five available choices. No partial credit will be given for wrong answers.

- 1. Which is the following functions are rational functions
 - $f(x) = \frac{x^2 x}{x}$
 - $g(x) = \underbrace{\begin{array}{c} 2-x \\ \sqrt{x-1} \end{array}}_{x} \nearrow \bigcirc$ $h(x) = \underbrace{\begin{array}{c} 2-x \\ \sqrt{x-1} \end{array}}_{3x+1} \nearrow \bigcirc$

 - $k(x) = \frac{x+4}{x^2+2x+3}$
 - (a) f, g, and k
 - (b) f only
 - (c) f and k
 - (d) f, h, and k
 - (e) None of the above
- 2. The parabola $y = -2(x+1)^2 + 3$ has the vertex at
 - (a) (1,3)
 - (b) (-1,3)
 - (c) (-1,-3)
 - (d) (1,-3)
 - (e) None of the above
- 3. Find the domain of $f(x) = \sqrt{1-x}$.
 - (a) $(-\infty, 1]$
 - (b) $(-\infty, 1)$
 - (c) $(-1, \infty)$
 - (d) $[-1, \infty)$
 - (e) None of the above
- 4. Find the vertical asymptote(s) of the rational function

$$f(x) = \frac{x(x-2)}{(x-2)(x+3)} = \frac{x}{\cancel{\times} + \cancel{\times}}$$

- (a) y = 2 and y = -3
- (b) x = 2 and x = -3
- (c) y = 2
- (d) x = -3
- (e) None of the above

5. Match each function with its horizontal asymptote (if it exists). [Hint: One asymptote can be used multiple times.]

(a)
$$f(x) = \frac{x-3}{x^2+1}$$
 (l)

(b)
$$g(x) = \frac{6x^2}{2 - 3x^2} \left(\vec{5} \right)$$

(c)
$$h(x) = \frac{8x^3 - 2x^2 + x}{4x^3 + x^2 + 4} \left(\checkmark \right)$$

(d)
$$k(x) = \frac{x^2 + x}{4x}$$
 (6)

(1)
$$y = 0$$

(2)
$$y = 1$$

(2)
$$y = 1$$
 (3) $y = -1$

$$(4) y = 2$$

$$(4) \ y = 2 \qquad (5) \ y = -2$$

(6) no horizontal asymptote

Part II

6. (10 points each) Solve the following inequality.

(a)
$$(x-9)(x+2) > 0$$

 $\left| \left(-\infty, -2 \right) \cup \left(9, \infty \right) \right|$

(b)
$$x^2 \le 2x + 2$$

$$x^{2}-2x-2 \le 0$$

 $x = 2 \pm \sqrt{4-4(-2)} = 2 \pm \sqrt{12} = 1 \pm \sqrt{3}$

7. (5 points) Use the graph below to solve the inequality, $f(x) \ge 0$.

 $(-\infty, -2) \cup (-2, 0] \cup (1, \infty)$

8. Write an equation in standard form of the parabola that has the same shape as the graph of $f(x) = 6x^2$ or $g(x) = 6x^2$, but with has the maximum = 8 at x = -6.

 $y = -6(x+6)^2 + 8$

9. Find the equation (in standard form) of the parabola with the vertex at (2,-6) and the y-intercept at (0, -2)

$$y = a(x-z)^2 - 6$$

-2 = $a(-z)^2 - 6$

$$-2 = a \left(-2\right)^2 - 6$$

$$y = (x-z)^2 - 6$$

10. Solve the inequality.

$$\frac{x^2+1}{2x^2+10x+8} \le 0$$

$$\frac{x^2+1}{2(x^2+5x+4)} = \frac{x^2+1}{2(x+4)(x+1)}$$

	(-0,-4)	(-4,-1)	$\left(\left(-1_{\ell} \infty \right) \right)$
pt	-5	-2	0
× ² +1	+	+	+
×+4		+	+
Xtl			
F(x)	+		+

11. Find the equation of the parabola in the standard form. Graph the parabola with x-intercepts and find its vertex.

$$f(x) = x^2 + 6x + 5 \qquad \boxed{-}$$

$$f(x) = x^2 + 6x + 5 \qquad = \qquad \left(\times^2 + 6 \times + 3^2 \right) + 5 - 3^2$$

$$= \left(\left(\times + 3 \right)^2 - 4 \right)$$

$$(\times +5)(\times +1) =0$$

12. (20 points) Graph the function
$$f(x) = \frac{x^2 - x - 2}{x^2 - 4}$$
 $= \frac{\left(\chi - 2\right)\left(\chi + l\right)}{\left(\chi - 2\right)\left(\chi + 2\right)} = \frac{\chi + l}{\chi + 2}$
(a) Domain

(b) y-intercept
$$-2/4 = 1$$
(c) x-intercept
$$(0/1/2)$$

(d) Vertical asymptote(s)

(e) Horizontal asymptote(s)

(f) Symmetries
$$f(-x) = \frac{x+1}{x+2} \times$$
Weither

	(g) Sign chart $\left(-\infty,-2\right)$	(-2,-1)	$\left(-l_{l}\infty\right)$	
X+I	3	-(!	+ 0	
X+2	_	+	+	
f(x)				

(h) Graph

