MAC 1105, Fall 2017.

Exam \#3

November 14, 2017

Name \qquad

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of "0" will be assigned to anyone who uses a cell phone during the examination or if one is found within hands reach.
- Calculators are not allowed on this exam.
- The exam consists of two parts. Part I contains five multiple choice questions worth 5 points each if not stated otherwise. Part II contains 7 open ended questions worth 10 points each if not stated otherwise.

Honor Code: On my honor, I have neither received nor given any aid during this examination.
\qquad

Part I

Choose your answer from five available choices. No partial credit will be given for wrong answers.

1. Which is the following functions are rational functions

- $f(x)=\frac{x^{2}-x}{x}$
- $g(x)=\frac{2-x}{x-1}$
- $h(x)=\frac{2 x^{1 / 2}-5}{3 x+1}$
- $k(x)=\frac{x+4}{x^{2}+2 x+3}$
(a) f only
(b) f and k
(c) f, k, and h
(d) f, k, and g
(e) None of the above

2. The parabola $y=-2(x-1)^{2}+3$ has the vertex at
(a) $(1,3)$
(b) $(-1,3)$
(c) $(-1,-3)$
(d) $(1,-3)$
(e) None of the above
3. Find the domain of $f(x)=\sqrt{x-1}$.
(a) $(-\infty, 1]$
(b) $(-\infty, 1)$
(c) $(1, \infty)$
(d) $[1, \infty)$
(e) None of the above
4. Find the vertical asymptote(s) of the rational function

$$
f(x)=\frac{x(x-3)}{(x-3)(x+2)}
$$

(a) $y=-2$ and $y=3$
(b) $x=-2$ and $x=3$
(c) $x=-2$
(d) $x=3$
(e) None of the above
5. Match each function with its horizontal asymptote(if it exists). [Hint: One asymptote can be used multiple times.]
(a) $f(x)=\frac{x^{2}-3}{x^{2}+1}$
(b) $g(x)=\frac{6 x^{3}}{2-3 x^{2}}$
(c) $h(x)=\frac{8 x^{2}-2 x^{2}+x}{4 x^{3}+x^{2}+4}$
(d) $k(x)=\frac{4 x^{2}+x}{1-2 x^{2}}$
(1) $y=0$
(2) $y=1$
(3) $y=-1$
(4) $y=2$
(5) $y=-2$
(6) no horizontal asymptote

Part II

6. (10 points each) Solve the following inequality.
(a) $(x-2)(x+9)>0$
(b) $x^{2} \geq 2 x+2$
7. (5 points) Use the graph below to solve the inequality, $f(x) \geq 0$.

8. Write an equation in standard form of the parabola that has the same shape as the graph of $f(x)=6 x^{2}$ or $g(x)=-6 x^{2}$, but with has the minimum $=8$ at $x=-6$.
9. Find the equation (in standard form) of the parabola with the vertex at $(2,6)$ and the y-intercept at $(0,2)$
10. Solve the inequality.

$$
\frac{x^{2}+1}{2 x^{2}+14 x+12} \leq 0
$$

11. Find the equation of the parabola in the standard form. Graph the parabola with x-intercepts and find its vertex.

$$
f(x)=x^{2}-6 x+5
$$

12. (20 points) Graph the function $f(x)=\frac{x^{2}-1}{x^{2}+3 x-4}$
(a) Domain
(b) y -intercept
(c) x-intercept
(d) Vertical asymptote(s)
(e) Horizontal asymptote(s)
(f) Symmetries
(g) Sign chart
(h) Graph

