Exam \#4

December 7, 2017

Name \qquad

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of " 0 " will be assigned to anyone who uses a cell phone during the examination or if one is found within hands reach.
- Calculators are not allowed on this exam.
- The exam consists of two parts. Part I contains four multiple choice questions worth 5 points each if not stated otherwise. Part II contains six open ended questions worth 9 points each if not stated otherwise.

Honor Code: On my honor, I have neither received nor given any aid during this examination.

Signature: \qquad

Part I

Choose your answer from five available choices. No partial credit will be given for wrong answers.

1. Find $f(g(x))$ if $f(x)=\sqrt{3 x-1}$ and $g(x)=x^{2}-x$
(a) $\sqrt{3 x^{2}-x-1}$
(b) $\sqrt{3\left(x^{2}-x\right)-1}$
(c) $\sqrt{3 x-1}^{2}-\sqrt{3 x-1}$
(d) $\sqrt{3 x-1}\left(x^{2}-x\right)$
(e) None of the above
2. Find the inverse of $f(x)=\frac{2 x-1}{3}$.
(a) $f^{-1}(x)=\frac{3 x+1}{2}$
(b) $f^{-1}(x)=\frac{2 x+1}{x}$
(c) $f^{-1}(x)=\frac{2 x-1}{3}$
(d) $f^{-1}(x)=\frac{3}{2 x-1}$
(e) None of the above
3. The equation $y=\ln (x)$ is equivalent to which equation?
(a) $x=\ln (y)$
(b) $y=b^{x}$
(c) $y=e^{x}$
(d) $x=e^{y}$
(e) None of the above
4. The expression $\ln \left(\frac{x^{2}}{2^{8} y^{3}}\right)$ can be expanded into
(a) $2 \ln x-8 \cdot 3 \ln 2+\ln y$
(b) $\ln x^{2}-8 \ln 2+3 \ln y$
(c) $2 \ln x-8 \ln 2+3 \ln y$
(d) $2 \ln x-8 \ln 2-3 \ln y$
(e) None of the above

Part II

5. Graph $y=-\frac{1}{2} \cdot 3^{x-3}$ using transformations. Start with the graph of a basic function - plot accurately as least two points and use them to perform transformations. Do one transformation at a time. Name the transformation and write the equation of the resulting function.

(iii) transformation:
$\mathrm{y}=$

(ii) transformation:
$\mathrm{y}=$

(iv) transformation:
$y=$

6. Graph $y=4 \log _{5}\left(\frac{x}{2}+3\right)$ using transformations. Start with the graph of a basic function - plot accurately as least two points and use them to perform transformations. Do one transformation at a time. Name the transformation and write the equation of the resulting function.
(i) Basic function:
$\mathrm{y}=$

(iii) transformation:
$\mathrm{y}=$

(ii) transformation:
$y=$

(iv) transformation:
$\mathrm{y}=$

7. Evaluate the following logarithm

$$
\log _{5}(125)
$$

8. Rewrite the following expression as one logarithm

$$
2 \log _{3} x+\log _{3} y-4 \log _{3}(x-1)-3 \log _{3} z
$$

9. Use the properties of logarithms to evaluate

$$
\log (25)+\log (4)+\log (10)
$$

10. (9 pts each) Solve the following equation
(a)

$$
5^{x-3}=25
$$

(b)

$$
2^{2 x-1}=\left(\frac{1}{2}\right)^{x+2}
$$

(c)

$$
11^{x+1}=3
$$

(d)

$$
3^{x^{2}-20}=9^{4 x}
$$

(e)

$$
\log _{5}(x+23)+\log _{5}(x-1)=2
$$

