# Exam #4

December 7, 2017

Name \_\_\_\_\_

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of "0" will be assigned to anyone who uses a cell phone during the examination or if one is found within hands reach.
- Calculators are not allowed on this exam.
- The exam consists of two parts. Part I contains four multiple choice questions worth 5 points each if not stated otherwise. Part II contains six open ended questions worth 9 points each if not stated otherwise.

**Honor Code:** On my honor, I have neither received nor given any aid during this examination.

Signature: \_\_\_\_\_

### Part I

Choose your answer from five available choices. No partial credit will be given for wrong answers.

- 1. Find f(g(x)) if  $f(x) = \sqrt{3x 1}$  and  $g(x) = x^2 x$ (a)  $\sqrt{3x^2 - x - 1}$ (b)  $\sqrt{3(x^2 - x) - 1}$ (c)  $\sqrt{3x - 1}^2 - \sqrt{3x - 1}$ (d)  $\sqrt{3x - 1}(x^2 - x)$ 
  - (e) None of the above
- 2. Find the inverse of  $f(x) = \frac{2x-1}{3}$ .
  - (a)  $f^{-1}(x) = \frac{3x+1}{2}$ (b)  $f^{-1}(x) = \frac{2x+1}{x}$
  - (c)  $f^{-1}(x) = \frac{2x-1}{3}$
  - (d)  $f^{-1}(x) = \frac{3}{2x-1}$
  - (e) None of the above
- 3. The equation  $y = \ln(x)$  is equivalent to which equation?
  - (a)  $x = \ln(y)$
  - (b)  $y = b^x$
  - (c)  $y = e^x$
  - (d)  $x = e^y$
  - (e) None of the above

4. The expression  $\ln\left(\frac{x^2}{2^8y^3}\right)$  can be expanded into

- (a)  $2\ln x 8 \cdot 3\ln 2 + \ln y$
- (b)  $\ln x^2 8\ln 2 + 3\ln y$
- (c)  $2\ln x 8\ln 2 + 3\ln y$
- (d)  $2\ln x 8\ln 2 3\ln y$
- (e) None of the above

## Part II

- 5. Graph  $y = -\frac{1}{2} \cdot 3^{x-3}$  using transformations. Start with the graph of a basic function **plot** accurately as least two points and use them to perform transformations. Do one transformation at a time. Name the transformation and write the equation of the resulting function.
- (i) Basic function:

(ii) transformation:





#### (iii) transformation:

| у | /=      |       |       |    |     |     |   |
|---|---------|-------|-------|----|-----|-----|---|
|   |         |       |       | 5  |     |     |   |
|   |         |       | 1     | 5. |     |     |   |
|   |         |       |       |    |     |     |   |
|   |         |       |       | 3. |     |     |   |
|   |         |       |       | -  |     |     |   |
|   |         |       |       | -  |     |     |   |
| _ |         |       |       |    |     |     |   |
| _ | 6 -5 -  | 4 -3  | -2 -1 | 1  | 2 3 | 4 5 | 6 |
|   | 6 –5 -  | 4 -3  | - i   |    | 2 3 | 4 5 | 6 |
|   | 6 –5 -  | 4 -3  | -1    | 2  | 2 3 | 4 5 | 6 |
|   | 6 – 5 - | -4 -3 | -     | 2  | 2 3 | 4 5 | 6 |
|   | 6 –5 -  | 4 -3  | -     | 3. | 2 3 | 4 5 | 6 |

#### (iv) transformation:

y=

| 5.      |       |
|---------|-------|
|         |       |
|         |       |
| 3.      |       |
| 2       |       |
|         |       |
| 1       |       |
|         | 4 5 6 |
|         | 4 5 0 |
| -1      |       |
|         |       |
|         |       |
|         |       |
| -3      |       |
| -3      |       |
| -3-<br> |       |
| 44      |       |

- 6. Graph  $y = 4 \log_5(\frac{x}{2} + 3)$  using transformations. Start with the graph of a basic function **plot** accurately as least two points and use them to perform transformations. Do one transformation at a time. Name the transformation and write the equation of the resulting function.
- (i) Basic function:

#### (ii) transformation:



7. Evaluate the following logarithm

 $\log_5(125)$ 

8. Rewrite the following expression as one logarithm

 $2\log_3 x + \log_3 y - 4\log_3(x-1) - 3\log_3 z$ 

9. Use the properties of logarithms to evaluate

 $\log(25) + \log(4) + \log(10)$ 

(a)

 $5^{x-3} = 25$ 

$$2^{2x-1} = \left(\frac{1}{2}\right)^{x+2}$$

(c)

 $11^{x+1} = 3$ 

(d)

 $3^{x^2 - 20} = 9^{4x}$ 

 $\log_5(x+23) + \log_5(x-1) = 2$