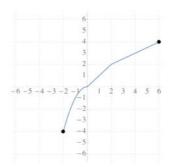
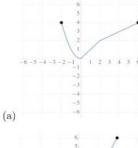
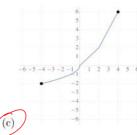
MAC 1140, Fall 2017

Exam #1

September 25, 2017

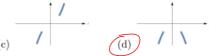

Name


- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of "0" will be assigned to anyone who uses a cell phone during the examination or if one is found within hands reach.
- Calculators are not allowed on this exam.
- The exam consist of two parts. Part I contains four multiple choice questions worth 5 points each. Part II contains 8 open ended questions worth 10 points each if not stated otherwise.


Part I

Choose your answer from five available choices. No partial credit will be given for wrong answers.


- 1. What is $(f \circ g)(x) = f(g(x))$ if $f(x) = \sqrt{3x-2}$ and $g(x) = \frac{2}{x+4}$
 - (a) $\frac{2}{\sqrt{3x-2}+4}$
 - (b) $\frac{2\sqrt{3x-2}}{x+4}$
 - (c) $\frac{2}{\sqrt{3x-2}+4}$
 - $(d)\sqrt{3\frac{2}{x+4}-2}$
 - (e) None of the above
- 2. The graph of a one-to-one function f is given below. Which of the following is the graph of its inverse?



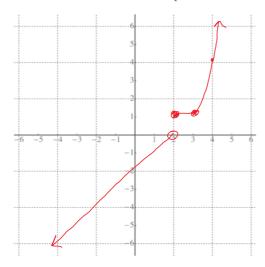
(e) None of the above.

3. Which of the following illustrates the end behavior of $f(x) = -2x^4 + 3x^2 - x + 7$

4. Find the domain of $f(x) = \frac{3-x}{\sqrt{x+2}}$

×>-2

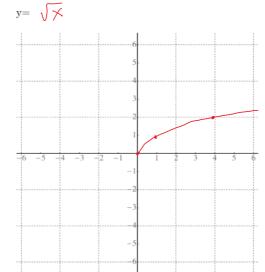
(a)
$$(-\infty, -2)$$

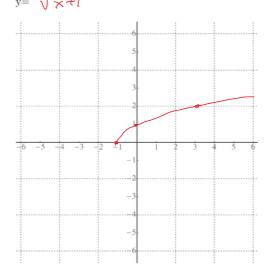

(b)
$$(-2,3) \cup (3,\infty)$$

(c)
$$[-2,\infty)$$

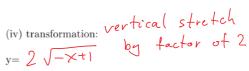
$$(d)$$
 $(-2,\infty)$

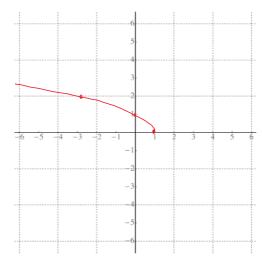
(e) None of the above.

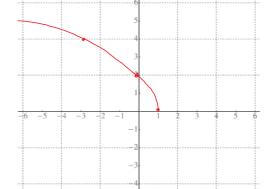

5. Graph the function $f(x)=\left\{\begin{array}{ll} x-2 & ,x<2\\ 1 & ,2\leq x\leq 3\\ (x-2)^2 & x>3 \end{array}\right.$



- 6. Graph $y = 2\sqrt{-x+1}$ using transformations. Start with the graph of a basic function **plot accu**rately as least three points and use them to perform transformations. Do one transformation at a time. Name the transformation and write the equation of the resulting function.
- (i) Basic function:


(ii) transformation: hor. shift to left by one unit





(iii) transformation: reflection about y-axis

7. Find the difference quotient for $f(x) = -5x^2 + 3$.

$$\frac{f(x+h)-f(x)}{h} = \frac{-5(x+h)^2+3-(-5x^2+3)}{h}$$

$$= \frac{-5(x^2+2xh+h^2)+3+5x^2-3}{h} = \frac{-5(x^2+2xh+h^2)+3+5x^2-3}{h} = \frac{-5(x^2+2xh+h^2)+3+5x^2-3}{h} = \frac{-5(x^2+2xh+h^2)+3+5x^2-3}{h} = \frac{-5(x+h)^2+3+5x^2-3}{h} = \frac{-5(x+h)^2+3+5x^2-3}{h}$$

- 8. (20 points) Let $f(x) = 2 + 3\sqrt{1-x}$
 - (a) Find the domain of f.

$$|-\times 20$$
 $[-\infty, 1]$

(b) Find the inverse of f.

$$X = 2+3\sqrt{1-9}$$

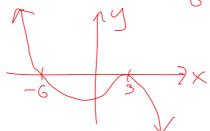
$$X-2 = 3\sqrt{1-9}$$

$$\frac{X-2}{3} = \sqrt{1-9}$$

$$\left(\frac{X-2}{3}\right)^2 = 1-9$$

$$-y = \left(\frac{x-2}{3}\right)^{2} - 1$$

$$y = \left(-\frac{x-2}{3}\right)^{2}$$
Pomain: $\left(2,\infty\right)$


9. Find the zeros and their multiplicities and sketch the graph of the following polynomial.

$$y = -3(x^2 + 2)(x - 3)^2(x + 6)^3$$

$$\begin{array}{cccc}
\times^{2} + 2 = 0 & \times -3 = 0 & \times +6 = 0 \\
\times^{2} = -2 & \times = 3
\end{array}$$
No solution

10. Find $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ and its domain if $f(x) = \frac{2}{x}$ and $g(x) = \frac{x+2}{1-x}$

$$\frac{f(x)}{g(x)} = \frac{2}{x}$$

$$= \frac{2}{x} \cdot \frac{1-x}{x+2} = \frac{2(1-x)}{x(x+2)}$$

$$\frac{2}{x} \cdot \frac{1-x}{x+2} = \boxed{\frac{2}{x}}$$

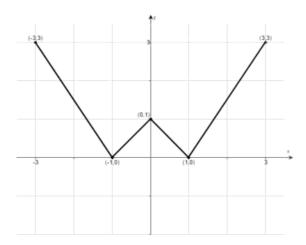
$$\frac{2(1-x)}{x(x+2)}$$

Domain: (-0,-2) U (-2,0) U(0,1) U(1,0)

11. Find two functions f(x) and g(x) (neither of them identity) so that h(x) = f(g(x)), where

$$h(x) = \frac{3}{2\sqrt{x+1}}$$

$$g(x) = \sqrt{x+1}$$


$$f(x) = \frac{3}{2x}$$

$$g(x) = \sqrt{x+1}$$

$$g(x) = \sqrt{x+1}$$

$$f(x) = \frac{3}{2\sqrt{x}}$$

12. Using the given graph of the function f, answer the parts (a)-(f) below.

(a) Find the domain of f. Express it in interval notation.

$$[-3,3]$$

(b) Find the range of f. Express it in interval notation.

(c) Find the x-intercepts.

$$\left(-\left(\begin{smallmatrix} 0 \end{smallmatrix}\right), \left(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}\right)\right)$$

(d) Find the y-intercepts.

$$(O_{l})$$

(e) Find the intervals on which f is increasing.

(f) Find the intervals on which f is decreasing.