MAC 1140, Fall 2017

Exam #2

October 16, 2017

Name _____

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of "0" will be assigned to anyone who uses a cell phone during the examination or if one is found within hands reach.
- Calculators are not allowed on this exam.
- The exam consist of two parts. Part I contains four multiple choice questions worth 6 points each. Part II contains four open ended questions worth 21.5 points each if not stated otherwise.

Part I

Choose your answer from five available choices. No partial credit will be given for wrong answers.

- 1. List potential rational zeros of the polynomial function $f(x) = 3x^4 x^2 + 4x 4$
 - (a) $\pm 1, \pm 2, \pm 4, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}$
 - (b) $1, 2, 4, \frac{1}{3}, \frac{2}{3}, \frac{4}{3}$
 - (c) $\pm 1, \pm 3, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{3}{2}, \pm \frac{3}{4}$
 - (d) $1, 3, \frac{1}{2}, \frac{1}{4}, \frac{3}{2}, \frac{3}{4}$
 - (e) None of the above
- $-4: \pm 1, \pm 2, \pm 4$ $3: \pm 1, \pm 3$ $= 1, \pm 2, \pm 4$ 1, 3
 - ±1, ±2, ±4, ±3, ±23, ±23
- 2. Which is the following functions are polynomial functions
 - $f(x) = \frac{2}{3}x^4 1$
 - $g(x) = \frac{2-x}{x-1} \times$
 - $h(x) = \frac{2x^5}{5} 3x^2 + 2x 6 = \frac{2}{5} \times 5 \frac{2}{5} \times \frac{2}{5} + \frac{2}{5} \times \frac{6}{5} = \frac{2}{5} \times \frac{1}{2} \times \frac{2}{5} = \frac{2}{5} \times \frac{2}{5} + \frac{2}{5} \times \frac{2}{5} = \frac{$

 - (a) f, g, and k
 - (b) f
 - (c) f and h
 - (d) f, h, and k
 - (e) None of the above
- 3. Find vertical asymptotes of the rational function

$$f(x) = \frac{x^2 + x - 6}{(x - 1)(x + 3)} = \frac{(\cancel{\times} + \cancel{\Sigma})(\cancel{\times} - \cancel{\Sigma})}{(\cancel{\times} - \cancel{\Sigma})} = \frac{\cancel{\times} - \cancel{\Sigma}}{\cancel{\times} - \cancel{\Sigma}}$$

- (a) y = 1 and y = -3
- (b) x = 1 and x = -3
- (c) y = 1
- (d)x = 1
- (e) None of the above
- 4. -3 and 1 2i are zeros of a polynomial function. Which of the following is also a zero:
 - (a) 1 + 2i
 - (b) −1 − 2*i*
 - (c) -1 + 2i
 - (d) 3
 - (e) None of the above.

Part II

- (b) y-intercept $f(0) = \frac{0}{-1} = 0$ (0,0)
- (c) x-intercept

$$\times (\kappa - 2) (\times + 2) = 0$$

 $\times = 0, \pm 2$ $(0,0), (2,0), (-2,0)$

(d) Vertical asymptote

$$X = \pm 1$$

$$X = -1$$

(f) Intersection with asymptote

$$\frac{x^{3}-4x}{x^{2}-1} = x$$

$$x^{3}-4x = x(x^{2}-1)$$

$$x^{3}-4x = x^{3}-x$$

$$-3x = 0$$

$$x = 0$$

	(- ₁ -2	2) (-2, -1	() (-(₁) (0	w/(Li	2) (2,6	∞)
p+	-3	-1.5	5	0.5		1 3	
×	_	_		+	+	1+	
x-2	_	_		-		 +	
X+L	6	+	+	+		+	
x-1		. —		-	1-		
X+1	_	_	+ /	+	+	+	
200		+		+	_	+	

6. Solve

$$x^3 = 9x - 10$$

 $\chi^3 - 9\chi + 10 = 0$ let's find a zero using Rational Zero Thm:

10: ±(,±2,±5,±10) } ±1,±2,±5,±10

(X-Z)
x2+2x-0=0
-2 ± √4-4.(-5) -2± √4+20
$\chi = -2$
$=\frac{-2\pm\sqrt{4\cdot\sqrt{6}}}{2}=\frac{-2\pm2\sqrt{6}}{2}=-1\pm\sqrt{6}$
1
$\times = \{2, -(\pm \sqrt{6})\}$
7. Find the domain of $f(x) = \sqrt{2 - \frac{4}{x - 3}}$

$(\bigcirc$					
	(0	-9	10	
1		[1	-8	
	l		-8	2 >	
		0	-9	10	
-[-1	1	8	
		-(-8	18 X	
	t		1		_
	1	0	-9	ID	
2		2	4	-10	
		2	-5	0 /	

Save: 2-43=0
$\frac{2x-6}{x-3} - \frac{4}{x-3} = 20$
$\frac{2\times-10}{\times-3} \ge 0$
$\frac{2(x-5)}{x-3} \ge 0$
2(x-5)=0 $x-3=0$ $x=3$
×=5

8. Solve

$$2x^2 + 3 < 5x$$

$$2 \times ^{2} - 5 \times + 3 \leq 0$$

$$X = \frac{5 \pm \sqrt{25 - 4 \cdot 3 \cdot 2}}{2 \cdot 2} = \frac{5 \pm \sqrt{25 - 24}}{4}$$

$$= \frac{5 \pm \sqrt{1}}{4} = \frac{5 + 1}{4} = \frac{5 + 1}{4} = \frac{1}{4} = \frac{1}{4}$$

 $2 \times^{2} - 5 \times + 3 = 2(\times - 1.5)(\times - 1)$

	$(-\infty_{l})$	[1,1,5]	[1.5, 00)
p+	0	1.2	2
(x-1.5)			+
(,,		+	+
(x-1)			
	1+		1 +

Solution:[1,1.5]