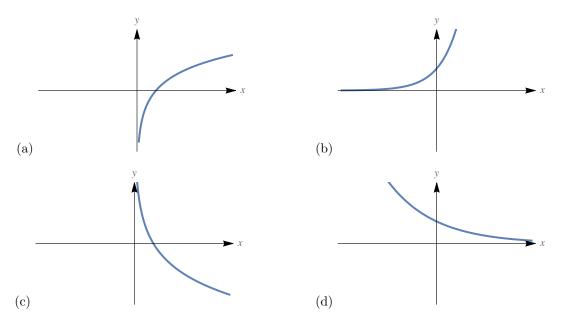
MAC 1140, Fall 2017.

Exam #3

October 30, 2017


Name ______

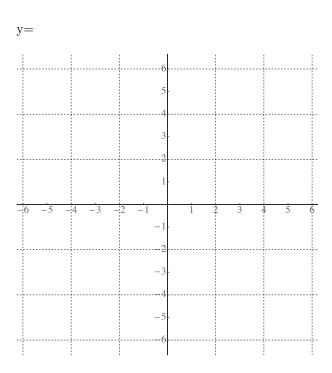
- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of "0" will be assigned to anyone who uses a cell phone during the examination or if one is found within hands reach.
- Calculators are not allowed on this exam.
- The exam consist of two parts. Part I contains five multiple choice questions worth 5 points each. Part II contains 5 open ended questions worth 17 points each if not stated otherwise.

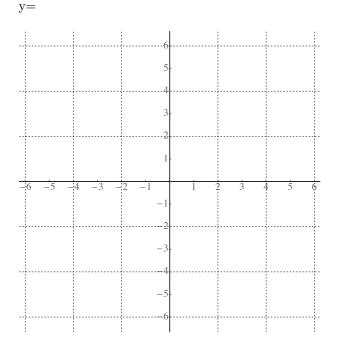
Part I

Choose your answer from five available choices. No partial credit will be given for wrong answers.

- 1. Which of the following is an exponential function
 - (a) $y = 5^{x+3}$
 - (b) $y = \frac{2x-1}{x^2+1}$
 - (c) $y = x^3$
 - (d) y = 2x 1
 - (e) None of the above
- 2. The value of $\log_4(-2)$ is
 - (a) -1
 - (b) 1/2
 - (c) $\sqrt{2}$
 - (d) 16
 - (e) None of the above
- 3. The equivalent exponential form of the equation $\log_2(5) = a$ is
 - (a) $2^5 = a$
 - (b) $2^a = 5$
 - (c) $5^a = 2$
 - (d) $5^2 = a$
 - (e) None of the above
- 4. The graphs of functions $y = e^x$, $y = (2/3)^x$, $y = \ln(x)$, and $y = \log_{1/2}(x)$ are given below, not necessarily in that order. Match each graph with an appropriate equation.

- 5. The expression $2\log(x) \log(y) 3\log(z)$ can be condensed to the following form.
 - (a) $\log\left(\frac{x^2z^3}{y}\right)$
 - (b) $\log\left(\frac{2x}{yz^3}\right)$
 - (c) $\log\left(\frac{x^2}{yz^3}\right)$
 - (d) $\frac{\log x^2}{\log(yz^3)}$
 - (e) None of the above


Part II


6. Solve the equation.

 $\log_2(x+2) + \log_2(x+5) = 2$

- 7. Graph $y = 4 \cdot \log_3 x + 1 + 1$ using transformations. Start with the graph of a basic function **plot accurately as least three points** and use them to perform transformations. Do one transformation at a time. Name the transformation and write the equation of the resulting function.
- (i) Basic function:

(ii) transformation:

(iii) transformation:

y =

								1
			6					
			5					
			4					
			3					
			3					
			2					
			1	*				
	1							
1	- 11					-	<u> </u>	- i-
-6 -	5 -4 -	-3 -2		1	2	3 4	1 5	6
-6 -	5 -4 -	-3 -2	2 -1 -1	1	2	3 4	1 5	6
-6 -	5 -4 -	-3 -2		1	2	3 4	1 5	6
-6 -	5 -4 -	-3 -2	-1	1	2	3 4	1 5	6
-6 -	5 -4 -	-3 -2	-1	1	2	3 4	5	6
_6 _	5 -4 -	-3 -2	-1 -2 -3 4	i	2	3 4	5	6
6	5 -4 -	-3 -2	-1	1	2		5	6
-6 -	5 _4 -	-3 -22	-1 -2 -3 4	i	2		5	

(iv) transformation:

y =

						5							
						5							
						4							1
						3							
						2							
						1							
				i									1
=	6 -5	-4	-3 -	2	-1				2	3 4	1	5	6
-	6 –5	-4	-3 -	-2	-1	-1	-	1 2	2	3 4	1	5	6
_	6 –5	-4	-3 -	2	-1				2	3 4		5	6
	6 –5	4	-3 -	-2	-1	-1			2	3 4		5	6
	6 –5	4	-3 -	-2	-1	-1 2			2	3 4		5	6
	6 –5	4	-3 -	-2	-1	-1 2				3 4		5	6
	6 –5	4	-3 -	-2	-1	-1 -2 -3			2	3 4		5	6

8. Solve the equation.

$$3 + e^{2x-1} = 5$$

9. Write as the sum and/or difference of logarithms. Express powers as factors.

$$\ln\left(\frac{(x-2)^3}{x^5(x+1)^3}\right)$$

10. Find the domain of the following function. Show your work.

$$f(x) = \log\left(\frac{1}{2} - 3x\right)$$

This page is intentionally left blank.