Exam \#1

September 27, 2017

Name

\qquad

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of " 0 " will be assigned to anyone who opens a cell phone during the examination or if one is found on their seat or hand.

No calculators are allowed!

Honor Code: On my honor, I have neither received nor given any aid during this examination.

Signature: \qquad

1. (5 points each) Evaluate the following limits algebraically, if they exist:
a) $\lim _{x \rightarrow-\infty} \frac{x^{2}+3 x-1}{x^{3}-4 x+2}$
b) $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$
c) $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-3 x+2}$
d) $\lim _{x \rightarrow 2} \frac{x^{2}+5 x}{(x-2)^{2}(2 x+3)}$
2. (5 points) Find the derivative of the function using the definition of derivative.

$$
f(x)=\frac{2}{x}
$$

3. (5 points each) Differentiate the following function and simplify the derivative
(a) $f(x)=x^{2}-\sqrt{x}$
(b) $f(t)=\frac{2 t}{\sqrt{t}}$
(c) $f(u)=\frac{1-2 u}{1+2 u}$
4. (10 points each) Find the first and second derivative of the function and simplify your answer
(a) $f(x)=x(3 x+4)^{5}$
(b) $s(t)=\frac{4}{3-t}$
5. (10 points) The distance a particle travels in a particle accelerator in CERN is given by the following function

$$
s(t)=\frac{32}{t}+5 t^{2}
$$

(a) What is the velocity of the particle when $t=2$?
(b) What is the acceleration of the particle when $t=2$?
6. (5 points) Find the point (x, y), at which the graph $y=3 x^{2}+3 x-10$ has a horizontal tangent.
7. (4 extra credit points) The derivative of a function represents the average rate of change of the function with respect to its variable. (true/false)
8. (4 extra credit points) Given a function $f(x)$, if the left-hand and right-hand limits as x approaches c exist and are equal then the limit as x approaches c exist. (true/false)

Use this page if you need more space for a problem.

