MAC 2233, Fall 2017

Exam #1

September 27, 2017

Name ______

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of "0" will be assigned to anyone who opens a cell phone during the examination or if one is found on their seat or hand.

No calculators are allowed!

Honor Code: On my honor, I have neither received nor given any aid during this examination.

Signature:			

1. (5 points each) Evaluate the following limits algebraically, if they exist:

a)
$$\lim_{x \to -\infty} \frac{x^2 + 3x - 1}{x^3 - 4x + 2} \stackrel{\cancel{\times} 3}{\underset{\cancel{\times} 3}{\longleftarrow}} = \lim_{x \to -\infty} \frac{\cancel{\frac{1}{\times}} + \cancel{\frac{3}{\times}} 2 - \cancel{\cancel{\times}} 3}{|-\cancel{\cancel{\times}}|^2 + \cancel{\cancel{\times}}|^2} = \underbrace{0 + 0 - 0}_{|-0 + 0} = \underbrace{0}_{|-0 + 0}$$

b)
$$\lim_{x\to 4} \frac{\sqrt{x}-2}{x-4}$$
. $\frac{\sqrt{\chi}+2}{\sqrt{\chi}+2} = \lim_{x\to 4} \frac{\chi+1}{(\chi+2)} = \frac{1}{\sqrt{\chi}+2} = \frac{1}{\sqrt{\chi}+2}$

c)
$$\lim_{x\to 2} \frac{x-2}{x^2-3x+2} = \lim_{x\to 2} \frac{(x-2)}{(x-2)(x-1)} = \frac{1}{2-1} = \prod_{x\to 2} \frac{1}{2}$$

d)
$$\lim_{x\to 2} \frac{x^2 + 5x}{(x-2)^2(2x+3)} = \frac{4+10}{(0)^2(4+3)} = \frac{14}{0}$$
 need to chect one-sided (inits.)

$$\lim_{x\to 2} \frac{x^2 + 5x}{(x-2)^2(2x+3)} = \frac{14}{(0-)^2 \cdot 7} = \frac{14}{0^4 \cdot 7} = \frac{14}{0^4} = \frac{14}{0^4} = \frac{14}{0^4}$$

$$\lim_{x\to 2} \frac{x^2 + 5x}{(x-2)^2(2x+3)} = \frac{14}{(0-)^2 \cdot 7} = \frac{14}{0^4} = \frac{14}{0^4$$

2. (5 points) Find the derivative of the function using the **definition of derivative**.

$$f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{2x - 2(x+h)}{h}$$

$$= \lim_{h \to 0} \frac{2x - 2x - 2h}{h \times (x+h)} = \lim_{h \to 0} \frac{-2}{x \times (x+h)} = \frac{-2}{x \times (x+h)}$$

$$= \lim_{h \to 0} \frac{2x - 2x - 2h}{h \times (x+h)} = \lim_{h \to 0} \frac{-2}{x \times (x+h)} = \frac{-2}{x \times (x+h)}$$

3. (5 points each) Differentiate the following function and simplify the derivative

(a)
$$f(x) = x^2 - \sqrt{x} \approx x^2 - x^{\frac{1}{2}}$$

$$f'(x) = 2x - \frac{1}{2}x^{-\frac{1}{2}} = 2x - \frac{1}{2\sqrt{x}}$$

(b)
$$f(t) = \frac{2t}{\sqrt{t}} = 2 \cdot t \cdot t = 2 \cdot t$$

 $f'(t) = 2 \cdot \frac{1}{2} \cdot t = \boxed{t'/2} = \boxed{\frac{1}{\sqrt{t}}}$

$$f'(u) = \frac{1-2u}{1+2u}$$

$$f'(u) = \frac{(1+2u)(-2)-(1-2u)\cdot 2}{(1+2u)^2} = \frac{-2-4u-2+4u}{(1+2u)^2}$$

$$= \frac{-4}{(1+2u)^2}$$

4. (10 points each) Find the first and second derivative of the function and simplify your answer

$$f'(x) = x(3x+4)^{5}$$

$$f'(x) = (3x+4)^{5} + (15x)^{5} + (15x)^{4} + (15x)^{4}$$

(b)
$$s(t) = \frac{4}{3-t} = 4(3-t)$$

$$S'(t) = 4(-1)(3-t)^{-2} - (-1) = 4(3-t)^{-2} = 4(3-t)^{-2}$$

$$S''(t) = 4(-2)(3-t)^{-3}(-1)$$

$$= 8(3-t)^{-3} = 8(3-t)^{-3}$$

- 5. (10 points) The distance a particle travels in a particle accelerator in CERN is given by the following function $s(t) = \frac{32}{4} + 5t^2 = 32 + \frac{1}{4} + 5t^2$
 - (a) What is the velocity of the particle when t = 2?

$$V(t)=s'(t)=-32t^2+10t=\frac{-32}{t^2}+10t$$

 $V(2)=-\frac{32}{4}+20=-8+20=12$

(b) What is the acceleration of the particle when t = 2? $\alpha(t) = v'(t) = -32 \cdot (-2) t^3 + 10 = \frac{64}{t^3} + 10$ $\alpha(2) = \frac{64}{8} + 10 = 8 + 10 = 18$

6. (5 points) Find the point (x, y), at which the graph $y = 3x^2 + 3x - 10$ has a horizontal tangent.

$$y' = 6x + 3 = 0$$

$$6x = -3$$

$$x = -1/2$$

$$= \frac{3 - 6 - 40}{4} = -\frac{43}{4}$$

$$\left(\left(-\frac{1}{2} \right) - \frac{43}{4} \right)$$

instantaneous

- 7. (4 extra credit points) The derivative of a function represents the average rate of change of the function with respect to its variable. (true false)
- 8. (4 extra credit points) Given a function f(x), if the left-hand and right-hand limits as x approaches c exist and are equal then the limit as x approaches c exist. (true false)