Exam \#2

October 25, 2017

Name

\qquad

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of " 0 " will be assigned to anyone who opens a cell phone during the examination or if one is found on their seat or hand.

No calculators are allowed!

Revenue function:	$R(x)=p * x$
Profit function:	$P(x)=R(x)-C(x)$
Elasticity of demand:	$E(p)=-\frac{p \cdot q^{\prime}(p)}{q(p)}$
Future value of an investment:	$B(t)=P\left(1+\frac{r}{k}\right)^{k t}$
	$B(t)=P e^{r t}$
Effective interest:	$r_{e}=\left(1+\frac{r}{k}\right)^{k}-1$ $r_{e}=e^{r}-1$

Honor Code: On my honor, I have neither received nor given any aid during this examination.
\qquad

1. (15 points) Find the intervals where the function is increasing/decreasing, concave up/down and find the relative \min / \max and inflection points.

$$
f(x)=\frac{x}{x^{2}+1}
$$

$\left[\right.$ Hint: $\left.f^{\prime \prime}(x)=\frac{2 x\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}}\right]$
2. (10 points) Find the critical numbers of the given function and classify each as a relative minimum or maximum

$$
f(x)=x^{3}(x-2)^{2}
$$

3. (10 points) Find the intervals where the function is increasing/decreasing
(a) $f(x)=\frac{16}{x}+x^{2}$
4. (10 points) Find the elasticity of demand and determine whether the demand is elastic, inelastic, or unitary at the indicated price.
(a) $q(p)=240-2 p ; p=50$
5. (10 points) Differentiate the given function.
(a) $f(x)=e^{3 x+1}$
(b) $f(x)=3 \log _{5} x^{2}$
6. (10 points) Use the marginal cost to estimate the cost of producing the 6 th unit of a commodity if the cost function is

$$
C(x)=\frac{1}{2} x^{2}-3 x+110
$$

7. (15 points) A citrus grower in Florida estimates that if 100 orange trees are planted, the average yield will be 60 oranges per tree. The average yield will decrease by 2 oranges per tree for each additional tree planted on the same acreage. How many trees should the grower plan to maximize the total yield? [Hint: Use x to denote the number of orange trees and find the total yield as a function of x.]
8. (10 points) Differentiate [Hint: simplify first]

$$
f(x)=\ln \left(x^{7}\left(x^{2}+3\right)^{4}\right)
$$

9. (5 extra credit points) Find the derivative of $f(x)=x^{x}$.
10. (5 extra credit points) Find the absolute minimum and maximum of the function $f(x)=\frac{e^{x}}{x}$ in the interval [1, 4]. [Hint: $e^{4} \approx 54.6$]

Use this page if you need additional space.

