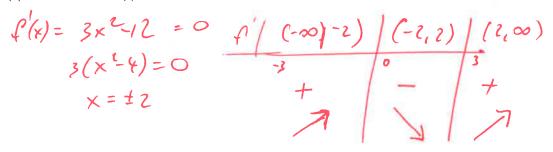
## Exam #2


April 5, 2017

| Name | Key |  |
|------|-----|--|
|      |     |  |

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of "0" will be assigned to anyone who opens a cell phone during the examination or if one is found on their seat or hand.

No graphing calculators are allowed!!

- 1. (10 points) Consider the function  $f(x) = x^3 12x$ .
  - (a) Find the interval(s) where the function is increasing and the interval(s) where it is decreasing.



(b) Find the absolute minimum and the absolute maximum of f on [0,3]

$$f(0) = 0 \iff \text{maximum}$$

$$f(3) = -9$$

$$f(2) = -16 \iff \text{minimum}$$

- 2. (10 points) Find the relative extrema, if any, of the function.
  - (a)  $f(x) = \frac{1}{1+x^2} = (/4 \times^2)^{-1}$

$$f'(x) = -(1+x^2)^{-2}Zx = \frac{-2x}{(1+x^2)^2}$$

$$/+x^2=0$$
  
 $x^2=-1$ 

$$\frac{(-\infty,0)(0,\infty)}{+}$$

X=0 is a local/relative maximum

(b)  $f(t) = t^5 - 5t$ 

$$f'(t)=5t'-5=0$$
 $5(t'-1)=0$ 
 $t'=1$ 
 $t=t1$ 

$$A' | (-\infty, -1) | (-1, 1) | (1, \infty)$$
 $+ | - | + |$ 

t = -1 relative max

t= 1 relative min

- 3. (15 points) Let  $f(x) = 3x^4 + 4x^3$ 
  - (a) Find the interval(s) where the function is increasing and the interval(s) where it is decreasing.

$$f'(x) = 12x^{3} + 12x^{2} = 0$$

$$12x^{2}(x+1) = 0$$

$$x = 0$$

$$x = -1$$

$$\frac{(-\infty,-1)}{-}$$
  $\frac{|-1,0)}{|-1,0|}$   $\frac{(0,\infty)}{|-1,0|}$ 

(b) Find the interval(s) where the function is concave up and the interval(s) where it is concave

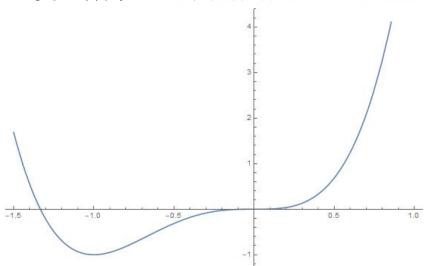
$$f''(x) = 12.3 \times^{2} + 12.2 \times = 0$$

$$12 \times (3 \times + 2) = 0$$

$$\times = 0$$

$$\times = -\frac{3}{3}$$

$$(-\infty, -\frac{2}{3})$$
  $(-\frac{2}{3}, 0)$   $(0, \infty)$   
+ - + +


(c) Find the x- and y- intercepts.

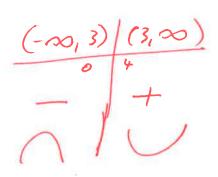
$$f(0) = 0 + 0 = 0 \rightarrow (0,0)$$
 is y-intercept

$$f(x) = 3x^{4} + 4x^{3} = 0$$
  
 $\chi^{3}(3x + 4x) = 0$ 

$$X=0$$
 (0,0)  $\begin{cases} x=-4/3 & (-\frac{4}{3},0) \end{cases}$  are  $x-intercepts$ 

(d) Sketch the graph of f(x). [Hint: Plot f(-1), f(0), f(1) and the x- and y- intercepts first.]




4. (10 points) Find the interval(s) where the function is concave up and the interval(s) where it is concave down

$$f(x) = \frac{x}{x-3}$$

$$f'(x) = \frac{1 \cdot (x-3) - 1 \cdot x}{(x-3)^2} = \frac{-3}{(x-3)^2} = -3(x-3)$$

$$f''(x) = 6(x-3)^{-3} \cdot 1 = \frac{6}{(x-3)^3}$$

$$x = 3$$



5. (10 points) Find the interest rate needed for an investment of \$5,000 to double in 15 years if interest is (a) compounded continuously, (b) compounded monthly.

(a)
$$10000 = 5000 e^{r.15}$$

$$2 = e^{15r}$$

$$(n2 = 15r.lne)$$

$$Y = \frac{ln^2}{15} \approx 0.0462$$

$$4.62\%$$

$$(b)$$

$$12.15$$

$$10000 = 5000 (1 + \frac{r}{12})$$

$$2 = (1 + \frac{r}{12})^{180}$$

$$2^{\frac{1}{60}} = 1 + \frac{r}{12}$$

$$1.00385 = 1 + \frac{r}{12}$$

$$1.00385$$

$$1 = 0.00385$$

$$1 = 0.0463$$

$$1 = 0.0463$$

6. (10 points) Find the accumulated amount after 5 years if \$10,000 is invested at 7%/year (a) compounded continuously, (b) compounded yearly.

$$\frac{(b)}{A = 10000 \cdot (1 + 0.07)}$$
=  $14,023.5$ 

7. (5 points) Use the laws of logarithms to expand and simplify the expression.

$$\ln \frac{x^{2}(x+3)}{e^{3}} = \ln x^{2}(x+3) - \ln e^{3}$$

$$= \ln x^{2} + \ln (x+3) - 3 \cdot \ln e$$

$$= 2 \ln x + \ln (x+3) - 3$$

8. (10 points) Find the derivative of the function.

(a) 
$$f(x) = e^{-3x}$$

$$f'(x) = e^{-3x}(-3) = \left[-3e^{-3x}\right]$$

(b) 
$$g(x) = \ln(3x^2 - 1)$$
  
 $g'(x) = \frac{1}{3 \times 2} \cdot 6x = \boxed{\frac{6 \times 3}{3 \times 2}}$ 

9\*. (a) (1 extra point) Is it true that  $\frac{a+b}{a} = \frac{a+b}{a} = \frac{1+b}{1}$  for any b and  $a \neq 0$ ?

NO!

(b) (5 extra points) Find the absolute minimum of the function  $f(x) = \frac{e^x}{x^2}$  on [1, 4].

$$f(x) = e^{x} \cdot x^{2}$$

$$f'(x) = e^{x} \cdot x^{2} - 2x^{3} e^{x}$$

$$= x^{3} e^{x} (x^{-2}) = 0$$

$$\begin{cases} x = 2 \\ x = 0 \end{cases}$$

$$f(1) = e = 2.71828$$
  
 $f(4) = e/16 \approx 3.4123$   
 $f(2) = e/4 \approx 1.8472$ 

Abs. min is at x=2.

Honor Code: On my honor, I have neither received nor given any aid during this examination.

Signature: