Exam \#3

November 20, 2017

Name \qquad

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of " 0 " will be assigned to anyone who opens a cell phone during the examination or if one is found on their seat or hand.

No calculators are allowed!

Future value of an income stream: $\quad F V=e^{r T} \int_{0}^{T} f(t) e^{-r t} \mathrm{~d} t$
Useful lifetime:
$R^{\prime}(t)=C^{\prime}(t)$

Honor Code: On my honor, I have neither received nor given any aid during this examination.
\qquad

1. (10 points each) Find the indefinite integral.
(a) $\int 2-12 x^{3} \mathrm{~d} x$
(b) $\int(x-1)(x+1) \mathrm{d} x$
(c) $\int t^{3}\left(t^{4}-2\right)^{4} \mathrm{~d} t$
(d) $\int \frac{2}{x \ln (x)} \mathrm{d} x$
2. (15 points each) Evaluate the integral and simplify your answer.
(a) $\int_{3}^{11} \frac{1}{\sqrt{2 x+3}} \mathrm{~d} x$
(b) $\int_{0}^{1} 6 x^{2} e^{x^{3}} \mathrm{~d} x$
3. (5 points) Setup but do not evaluate the integral that represents the area of the shaded region.

4. (5 points) Check that F is an antiderivative of f. [Hint: You have to differentiate a function.]

$$
F(x)=x \ln (x)-x+2 ; \quad f(x)=\ln (x)
$$

5. (10 points) Find the average value of $f(x)=e^{3 x}$ over the interval $[-1,1]$.
6. (10 points) At age 25, Alice starts making annual deposits of $\$ 3500$ into an IRA account that pays interest at an annual rate of 3% compounded continuously. Assuming the her payments are made as a continuous income flow, how much money will be in her account if she retires at the age of 65 ?
7. (5 extra credit points) Find the area under the graph of $\ln (x)$ on the interval $(1,3)$. The function is depicted below. [Hint: You already saw an antiderivative of $\ln (x)$.]

8. (2.5 extra credit points each) Determine if the following statement is true or false.
(a) (true / false)

$$
\int \frac{x^{2}}{x-1} \mathrm{~d} x=\frac{\frac{1}{3} x^{3}}{\frac{1}{2} x^{2}-x}+C
$$

(b) (true/false)

$$
\begin{gathered}
\int_{0}^{4} \frac{2 x}{\sqrt{x^{2}-3}} \mathrm{~d} x=\left|\begin{array}{c}
u=x^{2}-3 \\
\mathrm{~d} u=2 x \mathrm{~d} x
\end{array}\right|=\int_{0}^{4} \frac{1}{\sqrt{u}} \mathrm{~d} u=\int_{0}^{4} u^{-1 / 2} \mathrm{~d} u \\
=\left.2 u^{1 / 2}\right|_{0} ^{4}=2 \sqrt{4}-2 \sqrt{0}=2 \cdot 2=4
\end{gathered}
$$

