MAC 2233, Fall 2017

Exam #3

November 20, 2017

Name _____

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of "0" will be assigned to anyone who opens a cell phone during the examination or if one is found on their seat or hand.

No calculators are allowed!

Future value of an income stream: $FV = e^{rT} \int_0^T f(t)e^{-rt} dt$

Useful lifetime: R'(t) = C'(t)

Honor Code: On my honor, I have neither received nor given any aid during this examination.

Signature:

- 1. (10 points each) Find the indefinite integral.
 - (a) $\int 2 12x^3 \, dx$

$$= 2x - 12 \cdot 4x^{4} + C$$

$$= 2x - 3x^{4} + C$$

(b)
$$\int (x-1)(x+1) dx = \int \times^2 - \int \mathcal{A} \times = \boxed{\frac{1}{3} \times \frac{3}{-} \times + \bigcirc}$$

(c)
$$\int t^{3}(t^{4}-2)^{4} dt = \left| \begin{array}{c} u = t^{4}-2 \\ du = 4t^{3} dt \end{array} \right| = \frac{1}{4} \int u^{4} du$$

$$= \frac{1}{4} \int u^{5} dt$$

$$= \frac{1}{4} \int u^{5} + C$$

$$= \frac{1}{20} \left(t^{4}-2 \right)^{5} + C$$

$$(d) \int_{\frac{2}{x \ln(x)}}^{\frac{2}{2} \ln x} dx = \left| \frac{1}{2} - \frac{1}{2} \right| dx = \left| \frac{1}{2} - \frac{1}{2} \right| dx$$

$$= \frac{2 \ln |u| + C}{2 \ln |\ln x| + C}$$

2. (15 points each) Evaluate the integral and simplify your answer.

(a)
$$\int_{3}^{11} \frac{1}{\sqrt{2x+3}} dx = \begin{bmatrix} u = 2x+3 \\ du = 2 du \end{bmatrix} = \begin{bmatrix} 1 & 25 \\ du = 2 du \end{bmatrix} = \begin{bmatrix} 25 \\ \sqrt{u} & du \end{bmatrix} = \begin{bmatrix} 25$$

(b)
$$\int_0^1 6x^2 e^{x^3} dx = \left| \begin{array}{c} u = x^3 \\ du = 3x^2 dx \end{array} \right| = 6 \cdot \frac{1}{3} \int_0^8 e^u du$$

$$= 2 e^u \Big|_0^8$$

$$= 2 e^{-x^3} \Big|_0^8 = 2 e^{-2} = 2 e^{-2}$$

3. (5 points) Setup but do not evaluate the integral that represents the area of the shaded region.

4. (5 points) Check that F is an antiderivative of f. [Hint: You have to differentiate a function.]

$$F(x) = x \ln(x) - x + 2; \quad f(x) = \ln(x)$$

$$F'(x) = (x \ln x)^{-1} + 0 = | \cdot \ln x + x \cdot \frac{1}{x} - |$$

$$= \ln x + | -1 | = \ln x = f(x)$$

5. (10 points) Find the average value of $f(x) = e^{3x}$ over the interval [-1,1].

Ave:
$$\frac{1}{1-(-1)} \cdot \int_{-1}^{1} e^{3x} dx = \frac{1}{2} \cdot \frac{1}{3} \cdot e^{3x} \Big|_{-1}^{1}$$

$$= \frac{1}{6} \left(e^{3} - e^{3} \right)$$

6. (10 points) At age 25, Alice starts making annual deposits of \$3500 into an IRA account that pays interest at an annual rate of 3% compounded continuously. Assuming the her payments are made as a continuous income flow, how much money will be in her account if she retires at the age of 65?

$$FV = e^{0.03.40} \int_{0}^{40} 3500 e^{-0.03t} dt$$

$$= e^{0.03.40} .3500 \int_{0}^{40} e^{-0.03t} dt = e^{0.03.40} 3500 \frac{1}{-0.03} e^{-0.03t} dt$$

$$= \frac{-3500}{0.03} e^{0.03.40} (e^{-0.03.40}) = \frac{3500}{0.03} (e^{1.2})$$

$$= \frac{-3500}{0.03} (1 - e^{0.03.40}) = \frac{3500}{0.03} (e^{1.2})$$

7. (5 extra credit points) Find the area under the graph of ln(x) on the interval (1,3). The function is depicted below. [Hint: You already saw an antiderivative of ln(x).]

8. (2.5 extra credit points each) Determine if the following statement is true or false.

$$\int \frac{x^2}{x-1} \, \mathrm{d}x = \frac{\frac{1}{3}x^3}{\frac{1}{2}x^2-x} + C$$

$$\iff \text{we cannot integrate}$$

$$\text{He num. and denom. separately}$$

$$\int_{0}^{4} \frac{2x}{\sqrt{x^{2} - 3}} \, \mathrm{d}x = \left| \begin{array}{c} u = x^{2} - 3 \\ \mathrm{d}u = 2x \, \mathrm{d}x \end{array} \right| = \int_{0}^{4} \frac{1}{\sqrt{u}} \, \mathrm{d}u = \int_{0}^{4} u^{-1/2} \, \mathrm{d}u$$

$$= 2u^{1/2} \Big|_{0}^{4} = 2\sqrt{4} - 2\sqrt{0} = 2 \cdot 2 = 4$$
wed to charge the bounds or do back subs.