Final Exam

May 3, 2017

Name \qquad

- You will be told when to begin the work and when to terminate work on the examination. You must stop when instructed. Points may be deducted in case of violations.
- Please show your work to support your answers that require calculations. Correct but unsupported answers may not be given full credit.
- The use of a cell phone or other electronic communication devices during the examination is not allowed. The exam will be canceled and a grade of " 0 " will be assigned to anyone who opens a cell phone during the examination or if one is found on their seat or hand.

No graphing calculators are allowed!!

Average cost function: $\bar{C}(x)=\frac{C(x)}{x}$
Revenue function: $\quad R(x)=p * x$
Profit function: $\quad P(x)=R(x)-C(x)$
Elasticity of demand: $\quad E(p)=-\frac{p f^{\prime}(p)}{f(p)}$
Differential: $\quad \mathrm{d} y=f^{\prime}(x) \mathrm{d} x$
Average value: $\quad \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x$

1. (5 points each) Evaluate the limits algebraically, if they exist
a) $\lim _{x \rightarrow 3} \frac{2 x(x-3)}{\sqrt{x^{2}-2 x}}$
b) $\lim _{x \rightarrow 5^{+}} \frac{x-6}{\sqrt{x-1}-1}$
c) $\lim _{x \rightarrow \infty} \frac{3 x+102}{\sqrt{4 x^{2}+2 x-1}}$
d) $\lim _{x \rightarrow \infty} \frac{3 x^{3}+2 x-4}{x^{2}-x}$
2. (5 points) Find the derivative of the function using the definition of derivative. Find an equation of the tangent line at the point $x=2$.

$$
f(x)=x^{2}-2 x
$$

3. (5 points) The demand equation for a certain product is $p=25-0.1 x$, where p is the unit price and x is the quantity demanded of the product.
(a) Find the marginal revenue function, $R^{\prime}(x)$, and compute its value at $x=2$.
(b) Use the equation $x=f(p)=250-10 p$ to find the formula for the elasticity of demand. Is the demand elastic, unitary or inelastic when $p=15$?
4. (5 points) Acrosonic's production department estimates that the total cost (in dollars) incurred in manufacturing x ElectroStat speaker systems in the first year of production will be represented by the following function, where $R(x)$ is the revenue function in dollars and x denotes the quantity demanded.

$$
C(x)=300 x+40000 \quad \text { and } \quad R(x)=-0.04 x^{2}+800 x
$$

(a) Find the profit function $P(x)$
(b) Find the marginal profit function $P^{\prime}(x)$
(c) What is the marginal profit when $x=3600$?
(d) What is the actual profit in producing the 3601st speaker system?
5. (5 points) A particle moves along a line so that its position at time t is $s(t)=\frac{1}{12} t^{4}-\frac{1}{2} t^{3}+t^{2}-3 t+8$. Find the aceeleration function $a(t)$ and all times t at whieh the partiele does not aecelerate, i.e, $a(t)=0$.
6. (5 points each) Find the derivative of the function
(a) $f(x)=e^{x^{3}-2 x+12}$
(b) $g(x)=\ln \left(-2 x^{2}+x\right)$
(c) $h(x)=x \ln \left(x^{2}\right)$
7. (5 points) Find the absolute maximum and minimum value of the function $f(x)=2+(x-2)^{2}$ on the interval $[-2,5]$.
8. (10 points) Consider the function $f(x)=x^{4}-2 x^{3}+2$.
(a) Find the intervals on which f is increasing or decreasing.
(b) Find the local min/max of f.
(c) Find the intervals of concavity and the inflection points.
9. (5 points) Solve only one of the following problems:
(a) Your car will need new tires in 2 years. Assume that the price for 4 tires with installation is $\$ 500$. Determine how much you have to deposit in your savings account today to save for this expense if your savings account is compounded continuously with 5% interest.
(b) Your bike will need new tires in 2 years. Assume that the price for 2 tires without installation is $\$ 50$. Determine how much you have to deposit in your savings account today to save for this expense if your savings account is compounded monthly with 5% interest.
10. (5 points) Find the relative extrema, if any, of the function

$$
f(x)=\frac{2}{1-x^{2}}
$$

11. (5 points) Check that $F(x)$ is an antiderivative of $f(x)$
(a) $F(x)=\frac{-1}{x}-\frac{\ln x}{x}+1 ; \quad f(x)=\frac{\ln (x)}{x^{2}}$
(b) $F(x)=3-\frac{x^{2}}{4}+\frac{1}{2} x^{2} \ln (x) ; \quad f(x)=x \ln (x)$
12. (5 points each) Find the general indefinite integral.
(a)

$$
\int \frac{\sqrt{x}+4 x^{2}}{x} \mathrm{~d} x
$$

(b)

$$
\int t-\frac{1}{t^{4}} \mathrm{~d} t
$$

(c)

$$
\int 2 x e^{x^{2}} \mathrm{~d} x
$$

13. (5 points) Find the average value of the function $f(x)=\sqrt{x}$ on the interval [4,9]. Simplify your answer.
14. (5 points) Estimate the area under the graph of $f(x)=\left|2 x^{2}-3\right|$ from $x=0$ to $x=3$ using three approximating reetangles and left endpeints, draw the approximating reetangles. Simplify your answer.

15. (5 points each) Evaluate the integrals, simplify your answer
(a)

$$
\int_{0}^{1} x^{2}\left(x^{3}+2\right)^{2} \mathrm{~d} x
$$

(b)

$$
\int_{-1}^{2} \frac{x^{2}-1}{x-1} \mathrm{~d} x
$$

(c)

$$
\int_{1}^{e} \frac{(\ln x)^{3}}{x} \mathrm{~d} x
$$

16. (2 extra points each) No justification necessary.
(a) (True/False) If f is continuous on $[0,1]$, then f is differentiable on $(0,1)$.
(b) (True/False) Given a continuous function $f(x)$ and its antiderivative $F(x)$, the following identity holds for all constants a and b.

$$
\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a)
$$

17. (3 extra points each) Evaluate the integrals and simplify your answers. [Hint: Do not use substitution method to solve the integrals]
(a)

$$
\int_{1}^{e^{2}} \frac{\ln x}{x^{2}} \mathrm{~d} x
$$

(b)

$$
\int_{1}^{e} x \ln (x) \mathrm{d} x
$$

Honor Code: On my honor, I have neither received nor given any aid during this examination.
\qquad

