Ch. 6 - Planar graphs

8.1. Euler's Planarity formula & other properties of planar graphs

Recall that a graph $G = (V, E)$ can be represented geometrically as a subset of the plane \mathbb{R}^2 by using small disks for the vertices in V and arcs joining two disks to represent the edges of E.

Def. A graph G is said to be planar if we can find a representation of it in the plane in which no two edges intersect. Such a representation $E(G)$ is called a planar embedding of G.

Ex. 1. Let $G = K_4 = a \quad b$. Below are two planar embeddings of G.

\[\begin{align*}
E_1(G) & \quad \quad \quad \quad \quad \quad E_2(G) \\
\end{align*} \]

Def. Let $E(G)$ be a planar embedding of G. Then $\mathbb{R}^2 - E(G)$ will be a union of a finite number of connected open subsets of \mathbb{R}^2. Each of these open connected subsets is called a region of $E(G)$.

Ex. 2. The four regions of $E_1(G)$ from Ex. 1.
Although the size and orientation of the regions depend on the embedding \(E(G) \), the number of regions depends only on \(G \) and not on the particular embedding, as we will shortly see.

Theorem 1 (Euler’s planarity formula)

Let \(r_e(G) \) = the number of regions into which the planar embedding \(E(G) \) partitions \(R^2 \). If \(G \) is connected, then \(r_e(G) = |E(G)| + 2 - |V(G)| \), for any \(\varepsilon \).

Proof: We will prove the result by parametric induction on \(q = |E(G)| \). First, fix \(p = V(G) \).

Since \(G \) is connected, \(q \geq p - 1 \).

Basis: If \(q = p - 1 \), then \(G \) is a connected graph with \(p - 1 \) edges. So \(G \) must be a tree and hence \(r_e(G) = 1 \), for any planar embedding \(E(G) \). Since \(1 = (p - 1) + 2 - p \) it follows that \(r_e(G) = |E(G)| + 2 - |V(G)| \). So the result is true for \(q = p - 1 \) and for any \(\varepsilon \).

Ind. Step: Suppose the result is true for all graphs with \(q \) edges (where \(q \geq 1 \)) and for any \(\varepsilon \). Let \(G \) be a connected graph with \(q + 1 \) edges and \(E(G) \) be any planar embedding of \(G \). Since \(G \) has \(q + 1 \) edges & \(q \geq p - 1 \), \(G \) cannot be a tree. So \(G \) must have at least one cycle, \(C \) say. Let \(e \) be any edge in \(C \) and put \(G' = G - \{e\} \). Since the removal of \(e \) will reduce the number of regions
of $E(G)$, we have $r_e(G') = r_e(G) - 1$ and $|E(G')| = |E(G)| - 1$. Also $V(G) = V(G')$ and $r_e(G') = |E(G')| + 2 - |V(G')|$ by the induction hypothesis. So

$$r_e(G) = r_e(G') + 1$$

$$= |E(G)| + 2 - |V(G)| + 1$$

$$= |E(G)| + 2 - |V(G)|.$$

So, if the result is true for g, it will be true for $g+1$. Hence, by the Principle of Mathematical Induction, the result is true for all g. Since p was arbitrary, it is also true for all p. Hence the result is true for all planar graphs.

Notation: Since $r_e(G)$ does not depend on the particular embedding $e(G)$ that we use, we will denote it by just $r(G)$. We will also use $q(G)$ for $|E(G)|$ and $p(G)$ for $|V(G)|$.

Corollary 2 (Euler's Generalized Planarity Formula)

Let G be any planar graph & $k = \text{number of connected components of } G$. Then:

$$r(G) = q(G) + (k+1) - p(G).$$

Proof: Let G_1, \ldots, G_k be the k connected components of G and $E(G)$ be any planar embedding of G. Then for each $i = 1, \ldots, k$:

$$r(G_i) = q(G_i) + 2 - p(G_i).$$
So \[\sum_{i=1}^{k} r(G_i) = \sum_{i=1}^{k} q(G_i) + \sum_{i=1}^{k} e - \sum_{i=1}^{k} p(G_i). \tag{4} \]

But the infinite region is counted \(k \) times (instead of just once) in the sum \(\sum_{i=1}^{k} r(G_i) \). So
\[r(G) + (k-1) = q(G) + 2k - p(G). \]
Hence \(r(G) = q(G) + (k+1) - p(G). \)

Def. A maximal planar graph is any planar graph \(G \) such that \(G \cup \{x,y\} \) is non-planar for any pair of non-adjacent vertices \(x \) & \(y \) in \(G \).

Ex.3 (a) \(K_3 \) & \(K_4 \) are maximal planar graphs.
(b) \(K_5 - \{ \text{any edge}\} \) is a maximal planar graph
(c) \(K_{2,3} \) is not a maximal planar graph.

Prop.3 Let \(G \) be a maximal planar graph with \(p \geq 3 \) vertices and \(E(G) \) be any planar embedding of \(G \). Then each region of \(E(G) \) is bounded by 3 edges.

Proof: Suppose \(E(G) \) has a region which is bounded by \(>4 \) edges. Then we can find a region
\[v_1, v_2, v_3, \ldots, v_n, v_1, \]
which is bounded by a cycle \(C = \langle v_1, v_2, v_3, \ldots, v_n, v_1 \rangle \).
There are two cases:

Case (i) \(v_1, v_3 \in E(G) \). In this case, the embedding of the edge \(v_1, v_3 \) must be outside the cycle \(C \). But this means that \(v_1, v_3 \) is prevented from being an edge in \(E(G) \). So we can embed the edge \(v_1, v_3 \) inside the cycle \(C \) and hence contradict the fact that \(G \) is maximal planar.

Case (ii) \(v_1, v_3 \notin E(G) \). In this case \(v_1, v_3 \) are non-adjacent vertices and we can embed \(v_1, v_3 \) inside the cycle \(C \) — thereby contradicting the fact that \(G \) is maximal planar again. Hence every region of \(E(G) \) is bounded by 3 edges.

Prop 4. Let \(G \) be a graph with \(p \geq 3 \) & \(q = E(G) \).

(a) If \(G \) is maximal planar, then \(q = 3p - 6 \).

(b) If \(G \) is planar, then \(q \leq 3p - 6 \).

Proof (a) Suppose \(G \) is maximal planar. Let \(E(G) \) be any planar embedding of \(G \) & \(r = r(G) \). Let \(A_1, \ldots, A_r \) be the regions of \(E(G) \). Since each region of \(A_i \) is bounded by 3 edges, \(3r = e(A_1) + \ldots + e(A_r) = \text{number of edges counted} = 2q \) because each edge was counted exactly 2 times.

So \(3r = 2q \). But \(r = q + 2 - p \) by Euler's planarity formula. Hence \(3(q + 2 - p) = 2q \).

\[3q + 6 - 3p = 2q \quad \Rightarrow \quad q = 3p - 6 \]

(b) Let \(G \) be a planar graph. If we add edges one at a time to \(G \), we will get a maximal planar graph \(G' \). So \(q = q(G) \leq q(G') = 3p(G') - 6 = 3p(G) - 6 \). \(\therefore q \leq 3p - 6 \).
§2 Non-planar graphs & Kuratowski's theorem.

Corollary 5: K_5 is a non-planar graph.

Proof: Suppose K_5 was planar. Then by Prop 4(1) we will get $\Delta(K_5) \leq 3p(K_5) - 6$. Since K_5 has 10 edges and 5 vertices, this means that $10 \leq 3(5) - 6$. So $10 \leq 9$ which is a contradiction. Hence K_5 is non-planar.

Prop 6: If G is a planar bipartite graph, then $\Delta(G) \leq 2p(G) - 4$.

Proof: Let $E(G)$ be a planar embedding of G and $r = \Delta(G)$. Since G is a bipartite graph, each cycle of G must have an even number of edges. Since G is a graph, we need at least 3 edges to form a cycle. So each region of $E(G)$ will be bounded by a cycle with at least 3 edges. Let A_1, \ldots, A_r be the regions of $E(G)$. Then $e(A_i) \geq 4$ for each i. So $4r = 4 + 4 + \cdots + 4 \ (r \text{ times})$ $\leq e(A_1) + e(A_2) + \cdots + e(A_r)$ $= \text{number of edges counted} = 2\Delta$. So $2r \leq \Delta$. But $\Delta = 2p - r$. Hence $2(2p - r) \leq \Delta \Rightarrow 2(2p - r) \leq 2r$ $\Rightarrow 2p - 4 \leq q$ $\Rightarrow q \leq 2p - 4$.

Corollary 7: $K_{3,3}$ is a non-planar graph.

Proof: Suppose $K_{3,3}$ was planar. Then by Prop 6, $\Delta(K_{3,3}) \leq 2p(K_{3,3}) - 4$. So $9 \leq 2(6) - 4$, i.e., $q \leq 8$ which is a contradiction. Hence $K_{3,3}$ is non-planar.
Q1. When exactly is a graph non-planar?

Ans. We know that if \(q(G) > 3p(G) - 6 \), then \(G \) is non-planar. Also, if \(G \) is bipartite & \(q(G) > 2p(G) - 4 \), then \(G \) is also non-planar. But if \(q(G) \leq 3p(G) - 6 \), it does not follow that \(G \) is planar. Also, if \(G \) is bipartite & \(q(G) \leq 2p(G) - 4 \), it does not follow that \(G \) is planar.

Ex. 1

(a) \(G_1 = \)

(b) \(G_2 = \)

\[q(G_1) = 11 \leq 3(6) - 6 = 3p(G_1) - 6 \]
\[q(G_2) = 10 \leq 2(7) - 4 = 2p(G_2) - 4 \]

It is easy to see that if \(G_1 \) & \(G_2 \) were planar, then \(K_5 \) & \(K_{3,3} \) will be also be planar. So \(G_1 \) & \(G_2 \) are non-planar.

Since \(K_5 \) & \(K_{3,3} \) are non-planar, any graph \(G \) that contains \(K_5 \) or \(K_{3,3} \) as a subgraph (or something that "amounts" to being a subgraph) will be non-planar. So \(K_6, K_7, K_8, \ldots \) and \(K_{3,4}, K_{3,5}, \ldots, K_{4,4}, K_{4,5}, \ldots, K_{5,5} \) are all non-planar.

Q2. (a) Is \(K_{2,3} \) planar? Yes
(b) Is \(K_{2,2,2} \) planar? Yes, do for H.W.
(c) Is \(K_{2,2,3} \) planar? No, \(16 \neq 3(7) - 6 \)
(d) Is \(K_{2,2,2,2} \) planar? No, \(24 \neq 3(8) - 6 \)
Def. Let $e = uv$ be an edge in a graph G. Then we can create a vertex of degree 2 on the edge e by adding a new vertex x to G, by adding the edges ux & xv, and by deleting the edge uv from G.

Ex. 2

\[G = \begin{array}{c}
\text{u} \\
\text{w} \\
\text{y} \\
\text{o}_3 \\
\text{v}
\end{array} \quad \rightarrow \quad G' = \begin{array}{c}
\text{u} \\
\text{w} \\
\text{y} \\
\text{o}_3 \\
\text{x} \\
\text{v}
\end{array} \]

Def. Let x be a vertex of degree 2 in a graph G. Then we can merge out the vertex x from G by deleting the vertex x and by adding a new edge between the two vertices that were adjacent to x in G.

Ex. 3

\[G = \begin{array}{c}
\text{u} \\
\text{w} \\
\text{y} \\
\text{o}_3 \\
\text{v}
\end{array} \quad \rightarrow \quad G' = \begin{array}{c}
\text{u} \\
\text{w} \\
\text{y} \\
\text{o}_3 \\
\text{v}
\end{array} \]

Def. Two graphs G & H are homeomorphic if we can transform G into H by creating vertices of degree 2 on certain edges of G or by merging out certain vertices of degree 2 in G.

Theorem 8 (Kuratowski's planarity theorem). G is planar $\iff G$ has no subgraph which is homeomorphic to K_5 or $K_{3,3}$.

Proof: (\Rightarrow) Suppose G is planar. Then G cannot contain any subgraph which is homeomorphic to K_5 or $K_{3,3}$ (otherwise K_5 or $K_{3,3}$ would be planar). (\Leftarrow): hard - see textbook.
§3. The Demoucron, Malgrange & Perruisel Planarity Algorithm

Def. Let G be a graph and H be a subgraph of G. A piece of G relative to H is either
(a) an edge $e = uv$ with $e \notin E(G)$ & $u, v \in V(H)$ or
(b) a component C of $G - V(H)$ plus all the edges joining vertices of C to vertices of H.

Def. Let P be a piece of G relative to H. If $v \in V(P) \cap V(H)$, we say that v is a contact vertex of P. If the piece P has 2 or more contact vertices, we say that P is a segment of G relative to H.

Ex.1. Let $G = \begin{array}{ccc} a & b & c \\ o & - & d \\ e & f & g \end{array}$ and $H = \begin{array}{ccc} e & c & d \\ g & - & f \\ e \end{array}$

Then $G - V(H) = \begin{array}{ccc} a & b & o \\ g \end{array}$. So the pieces of G relative are as shown below.

- segment
- not a segment

Def. Recall that a cut-vertex of G is any vertex v of a connected graph such that $G - \{v\}$ is disconnected. A connected graph with no cut-vertex is called a block (or connected block).

Ex.2. $G = \begin{array}{ccc} a & b & c \\ \circ & \circ & \circ \\ b & c & b \end{array}$ blocks of G: $\begin{array}{ccc} a & c & b \\ \circ & \circ & \circ \end{array}$
The DMP Planarity algorithm will take a connected block as input. So before we apply the algorithm we must first pre-process the graph we are testing for planarity.

Pre-processing G for the DMP Planarity Algorithm

1. If G is not connected, then consider each component separately.
2. If a connected component has cut-vertices, then split the cut-vertices to get a set of blocks of G.
3. If $q(G_i) > 3p(G_i) - 6$ for any block G_i with $p(G_i) \geq 3$, then that block is non-planar & so G is non-planar.

Ex. 3 Let $G = [...]

Then the 4 blocks of G are shown below:

Algorithm 1 (The DMP Planarity algorithm)

INPUT: A pre-processed block $G = (V, E)$

OUTPUT:

- A planar embedding of G, if G is planar
- NON-PLANAR, if G is non-planar.

1. If G has no cycles, then G must be the tree K_2, and \cdots is a planar embedding of G & we are done.

Otherwise, choose any cycle C in G, let $i=1$, $r\leq 2$, and $H_i \leftarrow$ a planar embedding of C.
2. If \(E(H_i) = E(G) \), STOP. Otherwise, find all the segments of \(G \) relative to \(H_i \) and for each segment \(S \), let \(R_i(S) \subseteq \) the set of regions of \(H_i \) into which \(S \) can be compatibly embedded.

3. If there is a segment \(S \) such that \(R_i(S) = \emptyset \), then say NON-PLANAR and STOP;
If there is a segment \(S \) such that \(|R_i(S)| = 1 \), then let \(R \subseteq \) the unique region in \(R_i(S) \);
Otherwise, choose any segment \(S \) and let \(R \subseteq \) any one of the regions in \(R_i(S) \).

4. Choose any path \(L \) in \(S \) which connects two contact vertices of \(S \). Then let \(H_{i+1} = H_i \cup \{L\} \) the embedding of \(L \) in the region \(R_i \).
\(i \leftarrow i+1, \ \tau \leftarrow \tau +1 \), and go to step 2.

Ex. 3 Determine whether or not the graph on the right is planar.

Sol
\[H_1 = \]

\[H_2 = \]

Segments of \(G \) relative to \(H_i \):

\[R_i(S): \{1,2\} \]
\[\{1,2\} \]
\[\{1,2,3\} \]
\[\{3\} \]
$$H_3 = \begin{array}{c}
 a & b & c \\
 f & e & d
\end{array}$$

$$R_3(5) = \{3\} \uparrow R$$

$$H_4 = \begin{array}{c}
 a & b & c \\
 f & g & d
\end{array}$$

$$R_4(5) = \emptyset \quad \text{STOP. NON-PLEANR}$$

Ex. 4: Determine whether or not $K_{2,2,2}$ is planar.

Sol. $H_1 = \begin{array}{c}
 a & b & c \\
 f & e & d
\end{array}$

Segments of G rel. to H_1

$K_{2,2,2}$ is planar
§ 4. Polyhedral graphs & the geometric dual

A polyhedron is a solid figure with plane polygonal faces that can be continuously distorted (transformed) into a solid sphere.

Ex. 1 Some polyhedra (some textbooks call these simple polyhedra)
- Tetrahedron
- Cube
- Square based pyramid

Ex. 2 Some solids that are not polyhedra
- Two tetrahedra joined at a vertex.
- Large cube with a smaller cube hollowed out in the center.
- The picture frame (solid cube with a hole drilled through front to back face)
- Two tetrahedra welded together along an edge.
A polyhedral graph is any graph that can be obtained by considering the vertices and edges of a polyhedron as the vertices and edges of a graph.

Ex. 3

Prop 3. If G is a polyhedral graph, then G is planar and obviously connected.

If G is a polyhedral graph, consider the polyhedron from which G was obtained. If we imagine that the polyhedron is hollow and we make a hole in one face and stretch the polyhedron onto the plane, we will get a planar embedding of G.

Def. A regular polyhedron is one in which each face is a fixed regular polygon and in which each vertex has the same no. of edges incident to it.

Ex. 4. The tetrahedron and cube are regular.
Qu: Is a regular polyhedron? (assume each face is an equilateral triangle) — (No)
Is it even a polyhedron? (Yes).

Theorem 9: There are exactly 5 regular polyhedra.

Proof: Suppose P is a regular polyhedron. Then each face of P is a regular polygon with k edges, say. Let \(A_1, \ldots, A_r \) be the faces of P. Then
\[
e(\overline{A_1}) + \ldots + e(\overline{A_r}) = 2q
\]
So
\[
k \cdot r = 2q \quad \ldots \quad (1)
\]
Also, each vertex has a fixed number, \(l \) say, of edges incident to it. So, the degree of each vertex is \(l \). Now by the first theorem of graph Th., sum of degrees = \(2 \) (no. of edges)
So
\[
l \cdot p = 2q \quad \ldots \quad (2)
\]
Also by Euler’s formula \(r = q + 2 - p \quad \ldots \quad (3) \)

Now from (1) we have \(r = \frac{2q}{k} \), and from (2) we have \(p = \frac{2q}{l} \). Substituting in (3), we get
\[
\frac{2q}{k} = q + 2 - \frac{2q}{l}
\]
So
\[
\frac{2q}{k} + \frac{2q}{l} = \frac{2q}{2} + \frac{2q}{2}
\]
Hence
\[
\frac{1}{k} + \frac{1}{l} = \frac{1}{2} + \frac{1}{2} \quad \ldots \quad (4)
\]
Now we know that \(k \geq 3 \) (a polygon can't have less than 3 edges) and \(l \geq 3 \) (for the figure to be solid we need at least 3 edges at each vertex), and from (4) we get \(\frac{k + \frac{1}{2}}{l} > \frac{1}{2} \). So the only possible values of \(k \) and \(l \) are given in the table below.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>12</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>30</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>12</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>30</td>
<td>20</td>
<td>12</td>
</tr>
</tbody>
</table>

\(\)
§5. The geometric dual & graphs on other surfaces

Def. Let \(\mathcal{E}(G) \) be a planar embedding of a planar graph \(G \). We define the geometric dual \(G^* \) of \(G \) by

(a) \(V(G^*) \) = set of the regions into which \(\mathcal{E}(G) \) partitions the plane \(\mathbb{R}^2 \).

(b) For each edge \(e \) in \(\mathcal{E}(G) \) that is a common boundary of the regions \(R_1 \) & \(R_2 \), we get an edge between \(R_1 \) & \(R_2 \) in \(G^* \).

Ex. 1. Let \(\mathcal{E}(G) = \)

\[
\begin{array}{c}
R_3 \\
\downarrow \\
R_2 \\
\downarrow \\
R_1 \\
\end{array}
\]

Then \(G^* = \)

\[
\begin{array}{c}
R_3 \\
\downarrow \\
R_2 \\
\downarrow \\
R_1 \\
\end{array}
\]

Ex. 2. Let \(\mathcal{E}(G) = \)

\[
\begin{array}{c}
R_3 \\
\downarrow \\
R_1 \\
\end{array}
\]

Then \(G^* = \)

\[
\begin{array}{c}
R_3 \\
\downarrow \\
R_1 \\
\end{array}
\]

Note

From Ex. 1, it is clearly that \(G^* \) depends on the particular embedding of \(G \) that is selected. In general, \(G^* \) will be a multi-pseudo-graph.

Q.1. When is \(G^* \) independent of the embedding \(\mathcal{E} \) ?

Q.2. When is \(G^* \) guaranteed to be a graph?

Def. The graph \(G \) is \(1 \)-isomorphic to \(H \) if we can split \(G \) into blocks (by splitting its cut-vertices) and refit the blocks (by identifying pairs of vertices) to get \(H \).
Ex. 2 Let $G = \begin{array}{c}
\begin{array}{c}
\circ \circ \circ \\
\circ \circ \circ
\end{array}
\end{array}$ Blocks of G:

& $H = \begin{array}{c}
\begin{array}{c}
\circ \circ \\
\circ \circ
\end{array}
\end{array}$ Blocks of H:

Then G is 1-isomorphic to H.

Def. The graph G is 2-isomorphic to H if by flipping around a portion of G which can be separated by splitting two vertices we can get a graph G' which is 1-isomorphic to H.

Ex. 3 Let $G = \begin{array}{c}
\begin{array}{c}
\circ \\
\circ
\end{array}
\end{array}$

Then $G' = \begin{array}{c}
\begin{array}{c}
\circ \\
\circ
\end{array}
\end{array}$

& if $H = \begin{array}{c}
\begin{array}{c}
\circ \\
\circ
\end{array}
\end{array}$, then G is 2-isomorphic to H.

Theorem 10: If G is a planar graph with $k_r(G) \geq 3$, then

(a) G^e will be independent of the embedding \mathcal{E}

(b) G^e will always be a graph

(c) $(G^e)^* \cong G$.
Def. Let G be a graph with $k_v(G) \geq 3$. Then G^* does not depend on E. So we will denote G^* by G^*. We say that G^* is self-dual if $G^* \cong G$.

Ex. 4. Let $G = K_4$. Then $G^* = \text{Diagram}$.
So K_4 is self-dual.

Ex. 5. Let $G = \text{Diagram}$. Then $G^* = \text{Diagram}$.
And $(G^*)^* \cong G$. So the geometrical dual of the cube graph is the octahedral graph & the geometrical dual of the octahedral graph is the cube graph.

Ex. 6. Show that $(\text{icosahedral graph})^* = \text{dodecahedral graph}$ and $(\text{dodecahedral graph})^* = \text{icosahedral graph}$.

Graphs on other surfaces

1. A graph that can be embedded (with no edges crossing) on the surface of a sphere is called a spheroidal graph.
Fact: G is spheroidal $\iff G$ is spheroidal.

2. A graph that can be embedded (with no edges crossing) on the surface of a torus is called a toroidal graph.
Fact: K_5, $K_{3,3}$, $K_{3,4}$, K_6 & K_7 are all toroidal graphs.