
Chapter 1

Graphs

Section 1.0 Introduction

For years, mathematicians have affected the growth and development of computer
science. In the beginning they helped design computers for the express purpose of
simplifying large mathematical computations. However, as the role of computers in our
society changed, the needs of computer scientists began affecting the kind of
mathematics being done.

Graph theory is a prime example of this change in thinking. Mathematicians study
graphs because of their natural mathematical beauty, with relations to topology, algebra
and matrix theory spurring their interest. Computer scientists also study graphs because
of their many applications to computing, such as in data representation and network
design. These applications have generated considerable interest in algorithms dealing
with graphs and graph properties by both mathematicians and computer scientists.

Today, a study of graphs is not complete without at least an introduction to both
theory and algorithms. This text will attempt to convince you that this is simply the
nature of the subject and, in fact, the way it was meant to be treated.

Section 1.1 Fundamental Concepts and Notation

Graphs arise in many settings and are used to model a wide variety of situations.
Perhaps the easiest way to adjust to this variety is to see several very different uses
immediately. Initially, let’s consider several problems and concentrate on finding models
representing these problems, rather than worrying about their solutions.

Suppose that we are given a collection of intervals on the real line, say
C = { I 1 , I 2 , . . . , I k } . Any two of these intervals may or may not have a nonempty
intersection. Suppose that we want a way to display the intersection relationship among
these intervals. What form of model will easily display these intersections?

One possible model for representing these intersections is the following: Let each
interval be represented by a circle and draw a line between two circles if, and only if, the
intervals that correspond to these circles intersect. For example, consider the set

C = { [− 4 , 2] , [0 , 1] , (− 8 , 2] , [2 , 4] , [4 , 10) } .
The model for these intervals is shown in Figure 1.1.1.

2 Chapter 1: Graphs

[− 4 , 2]

[0 , 1]

[2 , 4] (− 8 , 2]

[4 , 10)

Figure 1.1.1. A model for the intersections of the members of C.

Next, we consider the following old puzzle. Suppose there are three houses (call
them h 1, h 2 and h 3) and three utility companies (say gas (g), water (w) and electricity
(e)). Our problem is to determine if it is possible to connect each of the three houses to
each of the three utilities without crossing the service lines that run from the utilities to
the houses. We model this puzzle by representing each house and each utility as a circle
and drawing a line between two circles if there is a service line between the
corresponding house and utility. We picture this situation in Figure 1.1.2. A solution to
this problem would be a drawing in which no lines crossed. The drawing of Figure 1.1.2
is not a solution to the problem, but merely an attempt at modeling the problem.

g w e

h 1 h 2 h 3

Figure 1.1.2. The three houses and three utilities model.

Chapter 1: Graphs 3

In our third problem, suppose you are the manager of a company that has four job
openings (say j 1 , j 2 , j 3 and j 4) and five applicants a 1 , . . . , a 5 and that some of these
applicants are qualified for more than one of your jobs. How do you go about choosing
people to fill the jobs so that you will fill as many openings as possible? We picture such
a situation in Figure 1.1.3. Again, each job and each applicant can be represented as a
circle. This time, a line is drawn from a circle representing an applicant to each of the
circles representing the jobs for which the applicant is qualified. A solution to this
problem would be a set of four lines joining distinct jobs to distinct applicants, that is,
one line joins each job to a distinct applicant. For example, the lines joining j 1 and a 2,
j 2 and a 1, j 3 and a 4 and j 4 and a 5 constitute a solution to this problem. Since lines only
join jobs to applicants, this is clearly the maximum number of lines possible. Can you
find another solution? The real problem is how can we find solutions in general?

j 1 j 2 j 3 j 4

a 1 a 2 a 3 a 4 a 5

Figure 1.1.3. A job applicant model.

Despite the fact that these problems seem very different, we have used a similar type
of diagram to model them. Such a diagram is called a graph. Formally, a graph
G = (V , E) is a finite nonempty set V of elements called vertices, together with a set E
of two element subsets of V called edges. In our example diagrams, each circle is a
vertex and each line joining two vertices is an edge. If the context is not clear, we will
denote V or E by V(G) or E(G) , respectively, to show they come from the graph G. In
Figure 1.1.2, the vertices are h 1, h 2, h 3, g, w, e and the edges are

{ h 1, g } , { h 1, e } , { h 1, w } , { h 2, g }
{ h 2, e } , { h 2, w } , { h 3, e } , { h 3, g } , { h 3, w } .

For simplicity, we will usually denote edges by consecutively listing the vertices at either
end. For example, the edge { h 1 , g } would be denoted h 1 g or gh 1.

One of the beauties of graphs is that they may be thought of in many ways: formally
as set systems, geometrically as the diagrams we have presented and algebraically, as we
shall see later. Such diverse representations afford us an opportunity to use many tools in
studying graphs and to apply graph models in many ways. To do this effectively, of
course, we need to build more terminology and mathematical machinery.

4 Chapter 1: Graphs

Given a graph G = (V , E), the number of vertices in V is called the order of G and
the number of edges in E is called the size of G. They shall be denoted as ⎪ V ⎪and
⎪ E ⎪, respectively. The interval graph of Figure 1.1.1 has order 5 and size 6. If a graph
G has order p and size q , we say G is a (p , q) graph. Two vertices that are joined by an
edge are said to be adjacent, as are two edges that meet at a vertex. If two vertices are not
joined by an edge, we say they are nonadjacent or independent. Similarly, two edges that
do not share a common vertex are said to be independent. The set of all vertices adjacent
to a vertex v is called the neighborhood of v and is denoted N(v). An edge between
vertices u and v is said to have u (or v) as an end vertex. Further, the edge is said to be
incident with v (or with u) and v is said to dominate u (also, u dominates v). The number
of edges incident with a vertex v is called the degree of v and is denoted deg v or by
deg G v if we wish to emphasize that this occurs in the graph G. The minimum degree
and maximum degree of a vertex in the graph G are denoted by δ(G) and Δ(G) ,
respectively. A graph in which each vertex has degree r is called an r-regular graph (or
simply regular). We now present the theorem traditionally called The First Theorem of
Graph Theory.

Theorem 1.1.1 Let G be a (p , q) graph and let V = { v 1 , v 2 , . . . , v p } . Then

i = 1
Σ
p

deg v i = 2q. Consequently, any graph contains an even number of vertices of odd

degree.

Proof. Since each edge has exactly two end vertices, the sum of the degrees counts each
edge exactly twice. Thus, the sum is obtained. Since 2q is even, an even number of
vertices of odd degree must then be present in the sum.

We have considered three problems thus far. The drawing of Figure 1.1.1 is a solution
to the first problem, and we have an idea of what a solution for one example of the third
problem looks like. But the drawing given for the utilities problem does not provide a
solution to that problem. This does not mean there is no solution, only that our drawing
fails to provide one. What if we try other drawings (see Figure 1.1.4)? One of the
interesting features of these drawings is the freedom we have to shape them. There are
no restrictions on the size of the vertices or on the length or even the shape of the edges.
These drawings are very much free-form. We are also free to choose an entirely different
representation for our graph, for example the set representation we used in defining
graphs. But this freedom also presents us with some difficulties. If a graph is presented
in different ways, how can we determine if the presentations really represent the same
graph?

Chapter 1: Graphs 5

Figure 1.1.4. Another drawing of the house-utilities graph.

Mathematicians use the term isomorphism to mean the "fundamental equality" of two
objects or systems. That is, the objects really have the same mathematical structure, only
nonessential features like object names might be different. For graphs, "fundamentally
equal" means the graphs have essentially the same adjacencies and nonadjacencies. To
formalize this concept further, we say two graphs G 1 and G 2 are isomorphic if there
exists a 1-1 and onto function f :V(G 1) → V(G 2) such that xy ∈ E(G 1) if, and only if,
f (x) f (y) ∈ E(G 2) (that is, f preserves adjacency and nonadjacency). We use the
function f to express the correspondence between vertices that are "essentially the same"
in the two graphs. The function f is called an isomorphism.

Example 1.1.1 The two drawings of the house-utilities graph are again shown in
Figure 1.1.5. An isomorphism between G 1 and G 2 is determined by the function
f : V(G 1) → V(G 2) where:

f (a) = x , f (b) = r , f (c) = y ,
f (d) = s , f (e) = z , f (g) = t.

An isomorphism from G 2 to G 1 is given by f − 1, the inverse of f.

6 Chapter 1: Graphs

a x y z

b g

c e

d r s t

G 1:

G 2:

Figure 1.1.5. Two isomorphic graphs.

Can you find other isomorphisms from G 1 to G 2?

A subgraph of G is any graph H such that V(H) ⊆ V(G) and E(H) ⊆ E(G); we
also say G contains H. If H is a subgraph of G and V(H) = V(G) , we say that H is a
spanning subgraph of G. A more restricted but often very useful idea is the following:
Given a subset S of V(G) , the subgraph induced by S, denoted <S>, is that graph with
vertex set S and edge set consisting of those edges of G incident with two vertices of S.

The graphs in Figure 1.1.6 illustrate these ideas. Since V(H) = V(G), H is a
spanning subgraph of G. Also, I is an induced subgraph of G since all edges of G with
both end vertices in V(I) are contained in I. However, J is not an induced subgraph of G
since the edge from 1 to 5 is in G, but is not in J.

1

2 3

4
5

1

2 3

4
5

1

2

4
5

1

2

4
5

G: H:

I : J:

Figure 1.1.6. Spanning subgraph H, induced subgraph I, subgraph J of G.

Chapter 1: Graphs 7

Several natural and useful variations on graphs will be helpful. The first is the idea of
a multigraph, that is, a graph with (possibly) multiple edges between vertices. A
pseudograph allows edges that begin and end at the same vertex (called a loop). If we
think of the edge between two vertices as an ordered pair rather than a set, a natural
direction from the first vertex of the pair to the second can be associated with the edge.
Such edges will be called arcs (to maintain the historical terminology), and graphs in
which each edge has such a direction will be called directed graphs or digraphs. For
digraphs, the number of arcs directed away from a vertex v is called the outdegree of v
(denoted od v) and the number of arcs directed into a vertex v is the indegree of v
(denoted id v). Often, for emphasis, we denote the arc directed from u to v as u → v. In
a digraph, we define the degree of a vertex v to be deg v = id v + od v. If u → v is an
arc of the digraph, we say that u dominates v and that v is dominated by u. Sometimes we
say u is adjacent to v or v is adjacent from u.

Clearly, we can produce even more variations such as pseudodigraphs, multidigraphs
and pseudomultidigraphs. Although these will not play as significant a role in our study
of graphs, at times they will be useful. In this text we will be sure the reader understands
the kind of graph under consideration, and the term graph will always be as we defined
it: finite order, without loops, multiple edges or directed edges.

multigraph digraph

Figure 1.1.7a. A multigraph and a digraph.

8 Chapter 1: Graphs

Figure 1.1.7b. A pseudograph.

Section 1.2 Elementary Properties and Operations

A quick inspection of a road map of the southern states shows several important cities
and the interstates that connect them. We model a portion of this map in Figure 1.2.1.

It seems natural to think of a graph (or digraph) when trying to model a road system.
Vertices represent cities, and edges (or arcs) represent the roads between the cities. In
tracing the route from one location to another, we would traverse some sequence of
roads, beginning at some starting point, and finally reaching our destination. For
example, we could travel from Atlanta to Nashville by first leaving Atlanta and traveling
along I75 to Chattanooga, then following I24 to Nashville. Such a model leads us
naturally to formally define the following concepts.

Let x and y be two vertices of a graph G (not necessarily distinct vertices). An x − y
walk in G is a finite alternating sequence of vertices and edges that begins with the vertex
x and ends with the vertex y and in which each edge in the sequence joins the vertex that
precedes it in the sequence to the vertex that follows it in the sequence. For example, in
the graph of Figure 1.2.1, one b − n walk is

b , I59 , c 2 , I75 , a , I20 , b , I59 , c 2 , I24 , n

while another is

b , I20 , a , I85 , c 1 , I85 , a , I75 , c 2 , I24 , n .

Chapter 1: Graphs 9

I40

I24

I59

I75

I20

I85

H78

n = Nashville

m = Memphis

b = Birmingham

a = Atlanta

c 1 = Charlotte

c 2 = Chattanooga

Figure 1.2.1. A model of roads between some southern cities.

The number of edges in a walk is called the length of the walk. Note that repetition
of vertices and edges is allowed. Ordinarily, we will use a more compact notation for a
walk by merely listing the vertices involved, noting that the edge between consecutive
vertices (at least in a graph or digraph) is then implied. We will only use the full notation
for walks in multigraphs, where there is a choice of edges and this choice is important, or
for emphasis of the edges involved. An x − y walk is closed if x = y and open
otherwise. Two walks are equal if the sequences of vertices and edges are identical.

Several stronger types of walks are also important. An x − y trail is an x − y walk
in which no edge is repeated, and an x − y path is an x − y walk in which no vertex is
repeated, except possibly the first and the last (if the path is closed). Clearly, a path is
also a trail. We consider a single vertex as a trivial path (walk or trail). In the graph of
Figure 1.2.1, we see that a , b , a , c 2 , b , is an a − b walk of length 4, while
a , b , c 2 , a , c 1 is an a − c 1 trail of length 4, and a , c 2 , n , m is an a − m path of
length 3.

It is clear that every path is a trail and every trail is a walk and that the converse of
each of these statements fails to hold. However, we now present a useful result that
relates walks and paths.

Theorem 1.2.1 In a graph G, every x − y walk contains an x − y path.

Proof. Let W be an x − y walk in the graph G. Note that a vertex may receive more
than one label if it occurs more than once in W. If no vertex is repeated, then W is

10 Chapter 1: Graphs

already a path; hence, we assume that at least one vertex is repeated in W. Let i and j be
distinct integers with i < j such that v i = v j . That is, the vertex v i is repeated as v j . If
we now delete the vertices v i , v i + 1 , . . . , v j − 1 from W, we obtain an x − y walk W 1
which is shorter than W and has fewer repeated vertices. If W 1 is a path, we are done; if
not, we repeat this process to obtain a new x − y walk W 2. If W 2 is a path, we are done;
otherwise, repeat this process. Since W is a finite sequence, eventually we must reach the
stage where no vertices are repeated and an x − y path is obtained.

A closed trail is called a circuit, while a nontrivial circuit with no repeated vertices
(other than the first and last) is called a cycle. We allow C 2 as a cycle, but note that it
does not occur in graphs. The existence of C 2 is restricted to multigraphs. We do not
consider C 1 (a single vertex) as a trivial cycle as this adds more complications than
benefits. The length of a cycle (or circuit) is the number of edges in the cycle (or circuit).
In the graph of Figure 1.2.3, w , x , y , z , w is a cycle of length 4; while
t , r , u , t , s , v , t is a circuit of length 6. A graph of order n that consists of only a cycle
(or path) is denoted C n (or P n) and is called simply an n-cycle (or n-path). If a graph
contains no cycles it is termed acyclic. Cycles and paths are very important ideas and
will be studied in much greater detail later. For now, they allow us to continue
expanding our terminology. The graph of Figure 1.2.2 is an example of another special
class of graphs called complete graphs, which contain an edge between all pairs of
vertices. We denote the complete graph of order p as K p .

x y

z w

e 3

e 4

e 1 e 5

e 2

e 6

Figure 1.2.2. The complete graph K 4.

Chapter 1: Graphs 11

a w x

b z y

t

r s

u v

Figure 1.2.3. A disconnected graph H.

The graph H of Figure 1.2.3 is clearly different from those we considered earlier. For
one thing, H consists of three "pieces." Each piece should be thought of as being
"connected," but H should not. We can formalize this idea and obtain a useful way of
describing "connected graphs" by using paths. We say a graph G is connected if there
exists a path in G between any two of its vertices and G is disconnected otherwise.
Clearly, there is no a − z path in H, but there are paths between any two of w , x , y, and
z. A component of a graph is a maximal connected subgraph. Thus, in this case H has
three components, a P 2, a C 4 and a K 5.

Connectivity in digraphs is a little more interesting in that there are several possible
kinds. A digraph D is said to be strongly connected (or strong) if for each vertex v of D
there exists a directed path from v to any other vertex of D. We say D is weakly
connected (or weak) if, when we remove the orientation from the arcs of D, a connected
graph or multigraph remains (often, we say that the underlying graph is connected). Of
course, D is disconnected if it is not at least weakly connected. For example, the digraph
E of Figure 1.2.4 is clearly weakly connected. However, E is not strong since there is no
directed path in E from x to any other vertex of E. The digraph D is also easily seen to be
strong.

xD: E:

Figure 1.2.4. A strong digraph D and weak digraph E.

12 Chapter 1: Graphs

Combining several previous ideas, we define a tree to be a connected acyclic graph; a
forest is an acyclic graph, that is, a graph each of whose components is a tree. (What else
would a forest be?) In defining a forest as a collection of trees, what we have done is
form a new graph from other graphs. In particular, the union of two graphs G 1 and G 2
(denoted G 1 ∪ G 2) is that graph G with V(G) = V(G 1) ∪ V(G 2) and
E(G) = E(G 1) ∪ E(G 2). If we form the union of m isomorphic copies of the graph
G, we denote the resulting graph as mG. As an example of this concept, the graph of
Figure 1.2.3 can be denoted as H = P 2 ∪ C 4 ∪ K 5.

Graph union is an example of one graph operation used to form a new graph from
other graphs. There are many other graph operations. Perhaps the simplest and most
natural graph operation is the following: Consider a graph G = (V , E) and form a new
graph G

_ _
where V(G

_ _
) = V(G) and an edge e ∈ E(G

_ _
) if, and only if, e is not in E(G).

We call G
_ _

the complement of G. In a sense, all we have done is remove all the edges
from G and insert those edges that were originally missing from G. It should also be
clear that the complement of G

_ _
is the graph G itself.

G: G
_ _

:

Figure 1.2.5. A graph G and its complement G
_ _

.

The join of two graphs G and H with disjoint vertex sets, denoted G + H, is the
graph consisting of G ∪ H and all edges between vertices of G and vertices of H.
Often, we will have occasion to consider the special case when H = K 1 and for
simplicity, we will denote this as G + x, where K 1 is the vertex x. We define the
complete bipartite graph K m ,n to be the join K

_ _
m + K

_ _
n . The graph of Figure 1.1.2 is

K 3 , 3 . Complete bipartite graphs are a special case of an important class of graphs. We
say a graph G is bipartite if it is possible to partition the vertex set V into two sets (called
partite sets), say V 1 and V 2, such that each edge of G joins a vertex in V 1 to a vertex of
V 2. Clearly complete bipartite graphs are bipartite, but complete bipartite graphs contain
all possible edges between the partite sets. More generally, a graph G is n-partite if it is
possible to partition the vertex set of G into n sets, such that any edge of G joins two
vertices in different partite sets. Complete n-partite graphs have all possible edges
between the partite sets. We denote the complete n-partite graph with partite sets of

Chapter 1: Graphs 13

order p 1 , p 2 , . . . , p n as K p 1 , p 2 , . . . , p n
. Can you find a representation for

K p 1 , p 2 , . . . , p n
as the join of graphs?

On the other hand, at times we will also remove a set S of vertices from a graph G,
along with all edges of G incident to a vertex in S. We denote the resulting graph as
G − S. Again, if S = { x }, we denote the resulting graph as G − x.

There are several graph operations that result in a graph whose vertex set is the
cartesian product of the vertex sets of two graphs. The classic paper of Sabidussi [10]
deals with several of these. We shall now consider some of these products.

The cartesian product of graphs G 1 and G 2, denoted G 1 × G 2, is defined to be the
graph with V(G 1 × G 2) = V(G 1) × V(G 2), and two vertices v = (v 1 , v 2) and
w = (w 1 , w 2) are adjacent in the cartesian product whenever v 1 = w 1 and v 2 is
adjacent to w 2 in G 2 or symmetrically if v 2 = w 2 and v 1 is adjacent to w 1 in G 1. Can
you show that P 3 × P 2 is isomorphic to P 2 × P 3? In general, is G 1 × G 2 isomorphic
to G 2 × G 1?

Figure 1.2.6. The cartesian product P 2 × P 3.

The lexicographic product (sometimes called the composition) of two graphs G 1 and
G 2, denoted G 1 [G 2] , also has vertex set V(G 1) × V(G 2) , while (v 1 , v 2) is
adjacent to (w 1 , w 2) if, and only if, either v 1 is adjacent to w 1 in G 1 or v 1 = w 1 in G 1
and v 2 w 2 ∈ E(G 2). In general, is G 1 [G 2] isomorphic to G 2 [G 1]?

Figure 1.2.7. The lexicographic products P 2[P 3] and P 3[P 2].

14 Chapter 1: Graphs

Section 1.3 Alternate Representations for Graphs

Earlier, we considered two ways of representing graphs, as a set system (V , E) and
pictorially. Now, we consider several other ways of viewing graphs.

Let G = (V , E) be a (p , q)-graph. Consider the p × p matrix A = [a i j] , where
each row (and each column) of A corresponds to a distinct vertex of V. Let a i j = 1 if
vertex v i is adjacent to vertex v j in G and a i j = 0 otherwise. Note that a ii = 0 for each
i = 1 , 2 , . . . , p. This adjacency matrix of G is clearly a symmetric (0 , 1)-matrix, with
zeros down the main diagonal. The adjacency matrix clearly contains all the structural
information about G and thus can be used as a representation for G. This representation
has several advantages. First, (0 , 1)-matrices are well-studied objects, and we gain all
the power of linear algebra as a tool for studying graphs (although we shall not take full
advantage of this here, the interested reader should see [1]). Second, the adjacency
matrix representation is a very convenient one for storage within a computer.

1 3

2 4

⎡
⎪
⎪
⎪
⎪
⎣1
1

1

0

1

0

0

1

0

0

0

1

0

0

1

1 ⎤
⎪
⎪
⎪
⎪
⎦

Figure 1.3.1. A graph and its adjacency matrix.

We now determine a method for finding the number of x − y walks of a given length
in a graph.

Theorem 1.3.1 If A is the adjacency matrix of a graph G with vertices
v 1 , v 2 , . . . , v p , then the (i , j)-entry of A n is the number of v i − v j walks of length n
in G.

Proof. We will apply induction on the length n. For n = 1, the result is obvious, as this
is just the adjacency matrix itself. Now let A n − 1 = [ai j

n − 1] and assume that ai j
n − 1 is the

number of distinct v i − v j walks of length n − 1 in G. Also, let A n = [ai j
n]. Since

A n = A n − 1 A , we have that

Chapter 1: Graphs 15

ai j
n =

k = 1
Σ
p

aik
n − 1 a k j . 1.1

Every v i − v j walk of length n in G must consist of a v i − v k walk of length n − 1
followed by the edge from v k to v j and the vertex v j . Thus, by induction and equation
(1.1), the result follows.

An idea similar to that of the adjacency matrix is the incidence matrix. For a (p , q)
graph G, let the p × q matrix M = [i xe] be defined as follows: i xe = 1 if vertex x is
incident to edge e and i xe = 0 otherwise. Thus, the rows of M correspond to the vertices
of G and the columns correspond to the edges. It is easy to see that all the structure of G
is contained in M; however, because M is not square, it lacks some of the power of
adjacency matrices. Despite this shortcoming, incidence matrices have some valuable
uses.

Still other, much simpler representations tend to be useful in computer applications.
Probably the most commonly used form is merely to list each vertex in V along with
those vertices that are adjacent to the listed vertex. This adjacency list contains all the
structure of G, but has no extraneous information about nonadjacencies (like the zeros of
the adjacency matrix). Nonadjacency is implied by omission from the list. Thus, when
using an adjacency list, a program does not need to decide whether or not the next piece
of information shows an edge or a nonedge, but rather it just retrieves the next adjacency.
Tests with a number of algorithms have shown that adjacency lists will often speed
computations. This is especially true in graphs that have many more nonadjacencies than
adjacencies (called sparse graphs).

Example 1.3.1. The adjacency lists for the graph of Figure 1.3.2 are now shown.

a b

c d

e a: b , c , e

b: a , d , e

c: a , d

d: b , c

e: a , b

e 1 e 2

e 3

e 4 e 6

e 5

Figure 1.3.2. A graph and its adjacency lists.

16 Chapter 1: Graphs

e

d

c

b

a

⎡
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎣ 1

0

0

0

1

e 1

1

0

0

1

0

e 2

0

0

0

1

1

e 3

0

0

1

0

1

e 4

0

1

1

0

0

e 5

0

1

0

1

0

e 6
⎤
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎦

Figure 1.3.3. The incidence matrix for the graph of Figure 1.3.2.

Section 1.4 Algorithms

In order to deal with graphs efficiently and actually determine their properties on a
computer, we need to develop processes that, when applied to a particular graph, will
produce the desired answer. Algorithms are step-by-step procedures for solving
problems. Usually, a graph problem will be posed in terms of several parameters (or
variables). We then describe the problem at hand by giving a specification of the
parameters involved and a statement about what constitutes a solution. An instance of a
problem is obtained when we specify values for the parameters.

When dealing with graphs on a computer, we face several problems, including
finding an algorithm that answers the question. But even then, there is no guarantee that
we will be able to actually solve the problem. There are several other difficulties that
must be faced. The first is the amount of space necessary for the information needed to
store the description of the instance of our problem. Such a description might typically
be in the form of the graph structure (adjacency matrices, adjacency lists, etc.). We may
also need space to keep any partial results or necessary facts. As graphs grow large, this
information can simply be too much to deal with. However, since computer memory has
become cheaper and external storage (like tapes and discs) can be used, we shall proceed
as though space is not the problem of fundamental concern, but rather that we can
manage the space requirements of our problem.

The problem we will be more concerned with is the time complexity, that is, the
relative time it will take us to perform the algorithm. We speak of relative time because
it is impractical to try to determine the exact running times of algorithms. The
computational speeds of machines differ, and the varying skills of programmers can also
affect how well an algorithm seems to perform. These concerns make it unreasonable to
try to measure time performance exactly. Instead, what we try to measure is the number

Chapter 1: Graphs 17

of computational steps involved in the algorithm. Since the exact steps we perform
might well depend upon the graph being investigated (the particular instance of the
problem), ordinarily our estimates are a worst-case measure of performance. Thus, an
upper bound on the time complexity of the problem is usually obtained.

Consider as an example the problem of computing the square of the adjacency matrix
A of a graph of order p. If we follow the typical rules for matrix multiplication, we
perform p multiplications and p − 1 additions to compute each entry of A 2. Since there
are p 2 entries in A 2, this means the algorithm really requires
p 2 × (2p − 1) = 2p 3 − p 2 operations to complete its task. Clearly, as p grows
larger, the number of computations we must perform grows even faster.

In judging the quality of an algorithm, we try to measure how well it performs on
arbitrary input. In doing this, we try to find an upper bound on the number of
computational steps necessary to perform this algorithm. This entails finding some
function that bounds the number of computational steps we must perform. As in the
description of matrix multiplication, this is usually a function of the size of the problem.
Here, size only refers to the amount of data in the instance of the problem at hand. Since
it is clear that we must compute more if we have more data, it only makes sense for us to
try to measure our work as a function of the problem size.

Returning to the problem of squaring the adjacency matrix A, if c 1 is the maximum
amount of time required to multiply two numbers and c 2 is the maximum amount of time
necessary to add two numbers, and c 3 is the maximum amount of time necessary to do
all the other steps necessary for us to perform the algorithm (you can think of this as
setup time to read in data, etc.), then we can bound the time, T(p) , it takes to square the
adjacency matrix A (or, for that matter, to perform matrix multiplication of two p × p
matrices) as:

T(p) ≤ (c 1 p + c 2 (p − 1)) p 2 + c 3 = (c 1 + c 2) p 3 − c 2 p 2 + c 3

Thus, the amount of time it takes to square the adjacency matrix is bounded by a
cubic function of p, the order of the graph. Since the constants are all dependent on the
machines, languages, programmers and other factors outside our control, we simplify our
description by saying that the problem of squaring the adjacency matrix of a graph of
order p is On The Order of p 3 , or O(p 3) (read big oh of p 3). Hence, we say that the time
complexity of the matrix multiplication algorithm is O(p 3).

Formally, we say that g(n) = O(f (n)) if there exist constants k and m, such that
⎪g(n)⎪ ≤ k ⎪ f (n)⎪ for all n ≥ m. An algorithm has polynomial time complexity if its
computational time complexity T(n) = O(p(n)) for some polynomial p in the input size
n.

18 Chapter 1: Graphs

Table 1.4.1 compares the times for various bounding functions based on given input
sizes. This table assumes that any operation requires .000001 seconds.

_ __
problem size_ __

time 10 30 50 100_ __
n .00001 sec .00003 sec .00005 sec .0001 sec_ __

n 2 .0001 sec .0009 sec .0025 sec .01 sec_ __
n 5 .1 sec 24.3 sec 5.2 min 2.7 hrs_ __
2n .001 sec 17.9 min 35.7 yrs 248 cent_ __
3n .059 sec 6.5 yrs 2 x 108 cent 370 cent_ __ ⎜⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

Table 1.4.1 Comparisons of several time functions and data sizes.

It is clear that for the same problem size, the smaller the bounding function, the faster
the algorithm is likely to run. That is, linear algorithms (those bounded by linear
functions) should be "faster" than those with complexity O(p 5) , which in turn should be
faster than those with complexity O(p 50) for similar data sets. It is also clear that for
some functions (like 2n), we have no hope of success, even with relatively small data
sizes. For example, if the process under consideration has complexity O(3n) , then we
can see there is no real hope of success even for values as small as n = 50. We call any
problem for which no polynomial algorithm can exist an intractable problem.

There is yet another kind of problem that at the present time sits between the
polynomial problems (those with a known polynomial time solution) and the intractable
problems. In order to consider such problems, we must consider decision problems, that
is, problems that can be answered "yes" or "no". For example, one such decision
problem is: Given two graphs G 1 and G 2, does G 1 contain a subgraph isomorphic to
G 2?

A problem is said to be in the class NP if it can be solved by a nondeterministic
polynomial algorithm. We can view such an algorithm as being composed of two parts.
The first stage is the guessing stage. Here, given an instance I, the guessing stage selects
some "structure" (graph, subgraph, vertex set, edge set, etc.) as a possible solution. Then,
in the second stage, the checking stage, the structure is checked to see if it provides a yes
or no answer to the decision problem. A nondeterministic algorithm solves a decision
problem if it always correctly provides a yes or no answer for the guessed structure (in
polynomial time). It should be clear that the set of all problems with polynomial
solutions P is a subset of NP. It is not known if P = NP, although many believe that this

Chapter 1: Graphs 19

is not the case.

There is yet another special type of problem within NP, the so called NP-complete
problems. These problems have been shown to be in a sense the hardest problems in NP.
That is, a problem X is NP-complete if a solution for X provides a solution for all other
problems Y in NP. By this we mean that there is a polynomial algorithm to "transform"
X into Y (and, hence, to convert a solution of X into a solution of Y).

A rather interesting theory of computational complexity has arisen around these
classes. It is not within the scope of this text to study this theory, but we do point out that
there are many graph theoretic problems that are known to be in this elusive class of NP-
complete problems. The interested reader should see the excellent text of Garey and
Johnson [6].

Section 1.5 Degree Sequences

Given any graph, we can easily find the degree of each of its vertices. For example,
the graph of Figure 1.3.2 has vertices of degree 2, 3, 3, 2 and 2. Each graph can be
associated with such a unique sequence called its degree sequence. For convenience,
these degrees can be ordered to form a nonincreasing sequence of nonnegative integers.
In this case, the sequence 3, 3, 2, 2, 2 is formed. Several interesting questions about
degree sequences now come to mind.

The first question you might think of is: Can we reverse this process? By this we
mean, given a degree sequence S, can we determine a graph with S as its degree
sequence? Perhaps a better first question is: Can we determine when a sequence of
integers represents the degree sequence of a graph? A sequence is said to be graphical if
it is the degree sequence of some graph. A graph G with degree sequence S is called a
realization of S. Finally, given a sequence S that is graphical, with realization G, is G
uniquely determined, or can there be several nonisomorphic realizations of S?

Let’s begin with the question: Are there some obvious restrictions on S? Certain
conditions are clearly important. First, degrees are nonnegative integers; thus, all the
terms of the sequence must be nonnegative integers. Next, if S has p terms, then no term
can be larger than p − 1, because no vertex can be adjacent to more than the p − 1 other
vertices. There are still other conditions that will eliminate some sequences.

Consider the sequence S: 1, 1, 1. For S to be the degree sequence of some graph, the
graph must have exactly three vertices of degree one. But by Theorem 1.1.1, any graph
must have an even number of vertices of odd degree, and therefore S cannot be a degree

20 Chapter 1: Graphs

sequence. Remember, Theorem 1.1.1 tells us that the sum of the degrees of the vertices
in any graph must be an even number, and hence the sum of the terms of S must be even.

Next, we ask: If the sequence S is graphical, is the graph uniquely determined? That
is, must there be only one graph (up to isomorphism) with S as its degree sequence? To
answer this question, consider the sequence S: 2, 2, 2, 2, 2, 2. This sequence passes the
first test in that all terms are nonnegative integers. It also passes the second test in that it
contains only even valued entries. It is easy to find two nonisomorphic graphs that have
degree sequence S. The graphs C 6 and 2C 3 are two such graphs (see Figure 1.5.1).
Thus, we have a negative answer to our question, that is, we see that degree sequences do
not always provide enough information to uniquely describe a graph.

C 6 : 2C 3 :

Figure 1.5.1. Two graphs with the same degree sequence.

The most important question raised earlier was: Can we determine when a sequence
is graphical? The answer to our question was provided independently by Havel [8] and
Hakimi [7].

Theorem 1.5.1 A nonincreasing sequence of nonnegative integers
S: d 1 , d 2 , . . . , d p (p ≥ 2, d 1 ≥ 0) is graphical if, and only if, the sequence
S 1 : d 2 − 1 , d 3 − 1 , . . . , d d 1 + 1 − 1 , d d 1 + 2 , . . . , d p is graphical.

Proof. Suppose that the sequence S 1 is graphical and let G 1 be a graph of order p − 1
with degree sequence S 1. The vertices of G 1 can be labeled as x 2 , x 3 , . . . , x p in such
a way that deg x i = d i − 1 if 2 ≤ i ≤ d 1 + 1 and deg x i = d i if d 1 + 2 ≤ i ≤ p.
We can construct a new graph G with degree sequence S by inserting into G 1 a new
vertex x 1 and the edges x 1 x j for 2 ≤ j ≤ d 1 + 1. The degree of x 1 is d 1, and the
degrees of the other vertices are now the remaining values of S. Thus, we have
constructed a graph with degree sequence S, and so S is graphical.

Conversely, suppose that S is graphical and among all graphs with degree sequence S,
let G be chosen with the following properties:

Chapter 1: Graphs 21

1. V(G) = { x 1 , x 2 , . . . , x p } and deg x i = d i , i = 1 , 2 , . . . , p.

2. The sum of the degrees of the vertices adjacent to x 1 is a maximum.

Suppose that x 1 is not adjacent to vertices having degrees d 2 , d 3 , . . . , d d 1 + 1, that
is, x 1 is not adjacent to the d 1 other vertices of largest degrees. Then there exist two
vertices x i and x j with d j > d i and such that x i is adjacent to x 1 but x j is not adjacent to
x 1. Since d j > d i , there exists a vertex x k such that x k is adjacent to x j but not to x i .
Now, removing the edges x 1 x i and x j x k and inserting x 1 x j and x i x k (see Figure 1.5.2)
results in a new graph H with degree sequence S. However, in H the sum of the degrees
of the vertices adjacent to x 1 is greater than in G, which contradicts property (2) in our
choice of G. Thus, x 1 must be adjacent in G to the d 1 other vertices of largest degree.
Now the graph G − x 1 has degree sequence S 1, and, hence, S 1 is graphical.

in G: x 1 x j in H: x 1 x j

x i x k x i x k

Figure 1.5.2. An edge interchange.

The fundamental step in the last proof was deleting the two edges x 1 x i and x j x k and
inserting the edges x 1 x j and x i x k . This operation left the degrees of the vertices
unchanged but varied the structure of the graph, and, it has come to be called an edge
interchange (see Figure 1.5.2).

The proof of the last theorem essentially provides an algorithm for testing whether a
sequence of nonnegative integers is graphical. We begin by applying our earlier tests for
ruling out sequences, followed by the reduction from S to S 1. We continue to repeat this
process until the sequence being tested fails or until a sequence of all zeros occurs. The
sequence of t zeros is graphical because t vertices and no edges suffices. This is called
the empty graph. We summarize these steps in the following algorithm.

Algorithm 1.5.1 Test for a Graphical Sequence.
Input: A sequence S of nonnegative integers of length p.
Output: Yes if the sequence is graphical, no otherwise.

22 Chapter 1: Graphs

1. If there exists an integer d in S such that d > p − 1, then halt and answer no.

2. If the sequence is all zeros, then halt and answer yes.

3. If the sequence contains a negative number, then halt and answer no.

4. Reorder the sequence (if necessary) so that it is nonincreasing.

5. Delete the first term d 1 from the sequence and subtract one from the next d 1 terms
to form a new sequence. Go to step 2.

We can show that Algorithm 1.5.1 actually determines whether the sequence S is
graphical. If the sequence halts before we apply step 5, then clearly a determination has
been made in step 1, 2 or 3. Thus, we must show that after applying step 5, we will
eventually produce a sequence of all zeros or a sequence that contains a negative term
(since returning to step 2 means that only test 2 or 3 will halt the algorithm). By the time
we reach step 5, we already know that S contains p terms and the largest is at most p − 1
(from step 1). In applying step 5, we produce a sequence of p − 1 terms with largest
value at most p − 2. In general, if we apply step 5 a total of k times, we produce a
sequence of p − k terms with the largest entry at most p − 1 − k. If step 5 were
actually applied p − 1 times, then the resulting sequence would be a single zero. Hence,
we must eventually produce a sequence that has negative terms or we will surely produce
a sequence of all zeros.

Once we have applied Algorithm 1.5.1 and determined that a particular sequence S is
graphical, we can use the intermediate sequences we constructed to produce a graph with
degree sequence S. Let’s consider the following example.

Example 1.5.1. Construction of a graph from its intermediate degree sequences.

Suppose we begin with the sequence S 1: 5, 4, 4, 3, 2, 1, 1. Step 1 is satisfied, and we
begin the loop of steps 2 − 5. The tests in steps 2 and 3 do not immediately halt us and
repeating the loop of steps 2 − 5 , we obtain the following collection of intermediate
sequences:

S 1: 5, 4, 4, 3, 2, 1, 1
S 2: 3, 3, 2, 1, 1, 0

S 3: 2, 1, 1, 0, 0
S 4: 0, 0, 0, 0

Thus, we have determined by Algorithm 1.5.1 that S is graphical. To construct a
graph with degree sequence S, we begin with the last sequence S 4. Clearly, S 4 is the

Chapter 1: Graphs 23

degree sequence of the empty graph on four vertices, say G 4. To proceed from S 4 to S 3,
we must introduce a new vertex of degree 2 and produce two vertices of degree 1. That
is, we simply undo step 5 of the algorithm. So insert a new vertex v 3 and make it
adjacent to any two of the original vertices. Call the resulting graph G 3. Repeat this
idea: Insert another vertex v 2 and join it to three vertices in G 3 to obtain the graph G 2.
One final repetition of this process produces the graph G 1 with degree sequence S of
Figure 1.5.3.

v 3

v 2

v 1

G 4: G 3:

G 2: G 1:

Figure 1.5.3. Reconstruction of a graph with degree sequence S.

An interesting result related to this construction and the proof of Theorem 1.5.1 was
found independently by Eggleton [2] and by Fulkerson, Hoffman and McAndrew [5].

Theorem 1.5.2 Any realization of a graphical sequence can be obtained from any other
realization by a finite sequence of edge interchanges.

An alternate result for testing graphical sequences is due to Erdo
. .
s and Gallai [3].

Theorem 1.5.3 A nonincreasing sequence of nonnegative integers

S: d 1 , d 2 , . . . , d p (p ≥ 2) is graphical if, and only if,
i = 1
Σ
p

d i is even and for each

integer k , 1 ≤ k ≤ p − 1 ,
i = 1
Σ
k

d i ≤ k (k − 1) +
i = k + 1

Σ
p

min { k , d i } .

24 Chapter 1: Graphs

Example 1.5.2. The Erdo
..

s and Gallai system of inequalities. Suppose we apply the
last result to the sequence S: 5, 5, 5, 5, 2, 2, 2. The sum of the terms of S is even (26),
and thus we must examine the system of inequalities.

1. For k = 1, d 1 = 5 ≤ 1(0) +
i = 2
Σ
7

min {1, d i} = 6.

2. For k = 2, d 1 + d 2 = 10 ≤ 2(1) +
i = 3
Σ
7

min {2, d i} = 2 + 10 = 12.

3. For k = 3,
i = 1
Σ
3

d i = 15 ≤ 3(2) +
i = 4
Σ
7

min {3, d i} = 6 + 9 = 15.

4. For k = 4,
i = 1
Σ
4

d i = 20 > 4(3) +
i = 5
Σ
7

min {4, d i} = 12 + 6 = 18.

Thus, S cannot be graphical, because the required inequalities break down when
k = 4.

We can see exactly why this happens if we think about the way edges must be
distributed. When k = 4 , the first four vertices (call them U) all have degree 5, and so
we must determine if there is room to absorb all the edges leaving U. Even if <U> is
complete, there must still be at least eight edges from <U> to the remaining three
vertices. But these three vertices all are supposed to have degree 2; hence, they cannot
handle the necessary edges. If we were to examine the earlier cases, we would see that
numerically there was still a possibility of success.

Let’s consider a similar question for digraphs. First, we need to decide what
information we want the degree sequence of a digraph to display. Should we show the
outdegrees of the vertices or the indegrees? It actually seems reasonable to display both.
Thus, we really want a sequence of ordered pairs, where the first entry of the pair is the
indegree of the vertex and the second entry is the outdegree. A sequence
S: (i 1 , o 1) , (i 2 , o 2) , . . . , (i p , o p) is called digraphical if it is the degree sequence
of some digraph. Fulkerson [4] and Ryser [9] independently discovered a
characterization of digraphical sequences that is reminiscent of our last result.

Theorem 1.5.4 A sequence S : (i 1 , o 1) , (i 2 , o 2) , . . . , (i p , o p) of ordered pairs of
nonnegative integers with i 1 ≥ i 2 ≥ . . . ≥ i p is digraphical if, and only if, i k ≤ p − 1
and o k ≤ p − 1 for each k , and

Chapter 1: Graphs 25

k = 1
Σ
p

i k =
k = 1
Σ
p

o k , and
k = 1
Σ
j

i k ≤
k = 1
Σ
j

min { j − 1 , o k } +
k = j + 1

Σ
p

min { j , o k }

for 1 ≤ j < p.

Section 1.6 Fundamental Counting

We have already seen several instances where it was necessary to determine how
many possible items were involved in the problem under consideration. This is not
unusual as we shall often find such counts to be very useful. The simplest and most
useful law that aids our ability to count the number of objects in a complicated collection
can be seen in the following idea: If we have "many" pigeons and "few" pigeon holes,
then some pigeon hole will hold more than one pigeon. We can make this principle more
precise with the aid of the following notation. By ⎣ x ⎦ we mean the greatest integer less
than or equal to x, and by ⎡ x ⎤ we mean the least integer greater than or equal to x.
Thus, for example, ⎣ 3. 71 ⎦ = 3, and ⎡ 25. 346 ⎤ = 26.

Theorem 1.6.1 (The Pigeon Hole Principle) If m pigeons are placed in k pigeon
holes, then one hole will contain at least

⎡m / k ⎤ pigeons.

Proof. Let x be the maximum number of pigeons in any one hole. Then m ≤ kx, and so

x ≥
k
m_ __. Since x is an integer, we see that x ≥ ⎡ m / k ⎤ .

We shall have occasion to use the Pigeon Hole Principle often. Although it seems
obvious and its proof is very easy, it has many important consequences and
generalizations. Certainly, its use is by no means restricted to graph theory.

As an illustration of the Pigeon Hole Principle, consider the following claim: In any
group of six people, there are either three mutual acquaintances or three mutual
nonacquaintances.

We can model this group of people using graphs. Represent each person as a vertex;
two vertices are joined by an edge if, and only if, the corresponding people are
acquaintances. What graph theoretic property will allow us to verify the claim? Three
mutual acquaintances would induce a K 3 in the graph, while three mutual
nonacquaintances would induce a K

_ _
3. Thus, we can restate the claim as follows.

26 Chapter 1: Graphs

Theorem 1.6.2 Any graph on six vertices contains an induced K 3 or an induced K
_ _

3 as
a subgraph.

Proof. Let v be any vertex (that is, any person). By the Pigeon Hole Principle, of the
remaining five vertices, either three are adjacent to v (acquaintances) or three are not
adjacent to v (nonacquaintances). First, suppose that three are adjacent to v. If any two
of these neighbors of v are themselves adjacent, then a K 3 is formed. If no pair of these
three vertices are adjacent, then a K

_ _
3 is formed by these vertices. A similar argument

applies when we assume v has three vertices not adjacent to it, and so the result follows.

Another example of a fundamental counting technique occurs when we are trying to
count the number of available choices we have in performing some graph operation. For
example, suppose we want to determine the number, num(p , G) , of labeled graphs on a
set of p vertices. It is a straightforward matter to see that any one edge can be placed in

this set of p vertices in (2

p) different ways; we simply choose two of the p vertices as

the end vertices of the edge. But in how many ways can we place k edges? Since there

are N = (2

p) possible ways to place an edge (the well-known binomial coefficient

describing the number of ways of selecting two objects from p objects), there are (k

N)
ways of placing k edges in the p vertices. We can determine the total number of graphs
on this set of vertices by summing these values over all possible sizes for our graph, that
is:

num(p , G) =
q = 0
Σ
N

(q

N) .

But it is a well-known property of the binomial coefficients that this sum equals 2N .
Hence, we have proved the following result.

Theorem 1.6.3 If N = (2

p) , then there are 2N labeled graphs on p vertices.

We continue this approach with the following result.

Theorem 1.6.4 The number of subgraphs of K n isomorphic to P k is

Chapter 1: Graphs 27

2 (n − k) !
n !_ __________ .

Proof. Recall that P k is a path on k vertices. Clearly, if k > n there can be no such
paths. Thus, suppose that k ≤ n. If we begin at an arbitrary vertex, there are n choices
for the first vertex. Clearly, there are n − 1 choices for the second vertex, n − 2 for the
third vertex and so on. Thus, the number of choices is

n(n − 1) (n − 2) . . . (n − (k − 1)) .

However, in counting the choices we have actually counted each path twice, since we
could simply reverse the order of selection of the vertices and obtain the same path.
Thus, the total number of subgraphs of K n isomorphic to P k is

2
n(n − 1) . . . (n − (k − 1))_ ________________________ =

2 (n − k) !
n !_ _________ .

Exercises

1. Determine as many isomorphisms as you can between the graphs G 1 and G 2 of
Figure 1.1.5.

2. Define the complement of G using set differences.

3. Represent K p 1 , p 2 , . . . , p n
as the join of graphs.

4. Prove that G 1 × G 2 is isomorphic to G 2 × G 1.

5. Determine a result analogous to Theorem 1.3.1 for digraphs.

6. Give examples to show that there are walks that are not trails and trails that are not
paths.

7. Given a (p 1 , q 1) graph G 1 and a (p 2 , q 2) graph G 2, determine formulas for the
order and size of G 1

_ __
, G 1 ∪ G 2, G 1 × G 2 and G 1 [G 2].

8. Prove or disprove: The graph G 1 [G 2] is isomorphic to G 2 [G 1].

9. Prove that if two graphs are isomorphic, then they have the same order and size
and degree sequence.

10. Find all nonisomorphic graphs of order 4.

28 Chapter 1: Graphs

11. Show that two graphs G and H are isomorphic if, and only if, there are two
bijections (1-1 and onto functions) f 1 : V(G) → V(H) and f 2 : E(G) → E(H)
such that e = uv ∈ E(G) if, and only if, f 2 (e) = f 1 (u) f 2 (v).

12. Prove that a (p , q) graph G is a complete graph if, and only if, q = (2

p) .

13. Determine the order and size of K p 1 , p 2 , . . . , p n
, n ≥ 2.

14. A (p , q) graph G is self complementary if G is isomorphic to G
_ _

. Show that if G is
self complementary, then p ≡ 0 , 1 (mod 4).

15. Suppose Δ(G) = k. Prove that there exists a supergraph H of G (that is, a graph H
that contains G as a subgraph) such that G is an induced subgraph of H and H is k-
regular.

16. Prove that if G is a regular nonempty bipartite graph with partite sets V 1 and V 2,
then ⎪ V 1 ⎪ = ⎪ V 2 ⎪.

17. Determine all nonisomorphic digraphs of order 4.

18. Characterize the matrices that are adjacency matrices of digraphs, that is, those
matrices A(D) = [a i j] where a i j = 1 if v i → v j ∈ E(D) and a i j = 0
otherwise.

19. Determine which of the following sequences is graphical, and for those that are
graphical, find a realization of the sequence.
a. 5, 5, 5, 3, 3, 2, 2, 2, 2, 2
b. 7, 6, 5, 5, 4, 3, 2, 2, 2
c. 4, 4, 3, 2, 1, 0

20. Show that the sequence d 1 , d 2 , . . . , d p is graphical if, and only if, the sequence
p − d 1 − 1 , p − d 2 − 1 , . . . , p − d p − 1 is graphical.

21. The degree set of a graph G is the set of degrees of the vertices of G.

a. Show that every set S = { a 1 , a 2 , . . . , a k } (k ≥ 1) of positive integers
with a 1 < a 2 < . . . < a k is the degree set of some graph.

b. Prove that if u(S) is the minimum order of a graph with degree set S, then
u(S) = a k + 1.

c. Find a graph of order 7 with degree set S = { 3 , 4 , 5 , 6 }.

22. Show that every graph of order n is isomorphic to a subgraph of K n .

Chapter 1: Graphs 29

23. Show that every subgraph of a bipartite graph is bipartite.

24. Let G be a bipartite graph. If A 21 is the transpose of A 12, show that the vertices of
G can be partitioned so that the adjacency matrix of G has the following form:

⎡
⎪
⎣A 21

0

0

A 12 ⎤
⎪
⎦

25. Let G be a (p , q) graph and let t be an integer, 1 < t < p − 1. Prove that if
p ≥ 4 and all induced subgraphs of G on t vertices have the same size, then G is
isomorphic to K p or K p

_ __
.

26. Let G be a (p , q) graph. Show that δ(G) ≤
p

2q_ __ ≤ Δ(G).

27. Show that the entries on the diagonal of A 2 are the degrees of G.

28. Show that any degree sequence of a nontrivial graph has two equal terms.

29. Show that d 1 , d 2 , . . . , d p is the degree sequence of a multigraph if and only if

i = 1
Σ
p

d i is even and d 1 ≤
i = 2
Σ
p

d i .

30. The line graph L(G) of a nonempty (p , q) graph G is that graph with
V(L(G)) = E(G) and such that two vertices in L(G) are adjacent if, and only if,
the corresponding edges in G are adjacent. If G has degree sequence
d 1 , d 2 , . . . , d p , determine formulas for the order and size of L(G).

31. Find L(K 2 , 3).

32. Assuming no human head has more than 2,000,000 hairs on it, show that there are
at least two people in New York City with exactly the same number of hairs on
their heads.

33. Show that if the digits 1 , 2 , . . . , 10 are used to randomly label the vertices of a
C 10 (no label is repeated), that the sum of the labels on some set of three
consecutive vertices along the cycle will be at least 17.

34. Show that there exist graphs on five vertices that do not contain an induced K 3 or
K 3

_ __
.

35. If we color the vertices of C 11 either red, white, blue or green, what can be said
about the order of the largest subgraph each of whose vertices has the same color?

30 Chapter 1: Graphs

36. Prove that in any group of p ≥ 2 people, there are always two people that have the
same number of acquaintances.

37. How many subgraphs isomorphic to K 1 , 3 are in K n?

38. How many subgraphs isomorphic to C t are in K n?

39. How many subgraphs isomorphic to C 4 are in K m ,n?

40. How many subgraphs isomorphic to P 5 are in K m ,n?

41. If three men check their hats at a club, in how many ways can the hats be returned
so that no man receives his own hat?

42. (*) Prove that any sequence of n 2 + 1 distinct integers contains either an
increasing subsequence of n + 1 terms or a decreasing subsequence of n + 1
terms.

43. Find a sequence of n 2 (n ≥ 3) distinct integers that does not contain an increasing
subsequence of n + 1 terms or a decreasing subsequence of n + 1 terms.

44. (*) Prove that if n + 1 numbers are selected from the set { 1 , 2 , . . . , 2n }, then
one of these numbers will divide a second one of these numbers.

45. (*) If every vertex of G has degree k, then

a. k is an eigenvalue of G

b. if G is connected, then the multiplicity of k is one,

c. for any eigenvalue λ, ⎪ λ ⎪ ≤ k.

References

1. Biggs, N. L., Algebraic Graph Theory, 2nd Edition. Cambridge University Press,
London (1993).

2. Eggleton, R. B., Graphic Sequences and Graphic Polynomials. A report in: Infinite
and Finite Sets, Vol. 1, ed. by A. Hajnal. Colloq. Math. Soc. J. Bolyai 10 (North
Holland, Amsterdam, 1975), 385 − 392.

3. Erdo
. .
s, P., and Gallai, T., Graphs with Prescribed Degrees of Vertices (Hungarian).

Mat. Lapok 11(1960) 264 − 274.

Chapter 1: Graphs 31

4. Fulkerson, D. R., Upsets in Round Robin Tournaments. Canad. J. Math.,
17(1965), 957 − 969.

5. Fulkerson, D. R., Hoffman, A. J., and McAndrew, M. H., Some Properties of
Graphs with Multiple Edges. Canad. J. Math., 17(1965), 166 − 177.

6. Garey, M. R., and Johnson, D. S., Computers and Intractability, A Guide to the
Theory of NP-Completeness. Freeman, New York, 1979.

7. Hakimi, S. L., On the Realization of a Set of Integers as Degrees of the Vertices of
a Graph. J. SIAM Appl. Math., 10(1962), 496 − 506.

8. Havel, V., A Remark on the Existence of Finite Graphs (Czech.), Casopis Pest.
Mat., 80(1955), 477 − 480.

9. Ryser, H. J., Combinatorial Properties of Matrices of Zeros and Ones. Canad. J.
Math., 9(1957), 371 − 377.

10. Sabidussi, G., Graph Multiplication. Math. Z., 72(1960), 446 − 457.

32 Chapter 1: Graphs

