Chapter 7

Matchings and r-Factors

Section 7.0 Introduction

Suppose you have your own company and you have several job openings to fill. Further, suppose you have several candidates to fill these jobs and you must somehow decide which candidates are to fill which jobs. Let's try to model this problem using graphs. The most natural model takes the form of a bipartite graph. Suppose that corresponding to each of m open jobs we associate a vertex and say we call these vertices $j_{1}, j_{2}, \ldots, j_{m}$. Also, corresponding to each of n job applicants we associate a vertex, say a_{1}, \ldots, a_{n}. Now, we join vertex a_{i} to vertex j_{k} if, and only if, applicant a_{i} is qualified for job j_{k}. We clearly have created a bipartite graph. A solution to our hiring dilemma is to find a set of edges that "match" each job to some distinct applicant. Clearly, our problem would make even more sense if we were to somehow rate the applicants and their "suitability" to handle each job. That is, we associate a measure of suitability (or unsuitability) with each edge in our model. An optimal solution, then, would be to find a set of job assignments that maximizes (or minimizes) the sum of these measures (generally called weights). We will consider this enhancement later. For now, we will be satisfied with merely finding suitable pairings.

We shall begin with a detailed investigation of such pairings in bipartite graphs. Our goal is to find an effective method of determining the best possible pairing, whether it be in terms of most edges used or in terms of optimizing some weight function. We shall investigate both theoretic and algorithmic approaches. We shall ultimately see that this area is a meeting point for many different ideas in discrete mathematics. This will provide us with a chance to use diverse techniques and apply our results in many interesting and unusual ways.

Section 7.1 Matchings and Bipartite Graphs

More formally, two distinct edges are independent if they are not adjacent. A set of pairwise independent edges is called a matching. Thus, to solve our job assignment problem, we seek a matching with the property that each job j_{i} is incident to an edge of the matching. In most situations, it is not merely a matching that we want, but the largest possible matching with respect to some measurable quantity. Here, we wish the maximum number of jobs to be filled, but in other situations there may be better ways to measure how successfully we have formed our matching. In G, a matching of maximum cardinality is called a maximum matching and its cardinality is denoted $\beta_{1}(G)$. A matching that pairs all the vertices in a graph is called a perfect matching.

Figure 7.1.1. The solid edges form a maximum matching.
In a study of matchings, several useful observations will actually take us a long way toward our goal. Berge [2] made perhaps the most applicable of these observations. Following his terminology, we define an edge to be weak with respect to a matching M if it is not in the matching. A vertex is said to be weak with respect to M if it is only incident to weak edges. An M-alternating path in a graph G is a path whose edges are alternately in a matching M and not in M (or conversely). An M-augmenting path is an alternating path whose end vertices are both weak with respect to M. Thus, an M augmenting path both begins and ends with a weak edge. If it is clear what matching we are using, we will simply say alternating path or augmenting path. The graph of Figure 7.1.2 contains a matching M with edges 23,54 and 78 . An augmenting path containing these edges is shown with nonmatching edges dashed. With this terminology in mind, we will find the following lemma extremely useful.

Figure 7.1.2. Augmenting path 1, 2, 3, 5, 4, 7, 8, 9 for M

Lemma 7.1.1 Let M_{1} and M_{2} be two matchings in a graph G. Then each component of the spanning subgraph H with edge set

$$
E(H)=\left(M_{1}-M_{2}\right) \cup\left(M_{2}-M_{1}\right)
$$

is one of the following types:

1. An isolated vertex.
2. An even cycle with edges alternately in M_{1} and M_{2}.
3. A path whose edges are alternately in M_{1} and M_{2} and such that each end vertex of the path is weak with respect to exactly one of M_{1} and M_{2}.

Proof. It is easily seen that $\Delta(H) \leq 2$, since no vertex can be adjacent to more than one edge from each matching. Thus, the possible components are paths, cycles or isolated vertices.

Now, consider a component in H that is not an isolated vertex. It is easily seen that in any such component, the edges must alternate, or the definition of matching would be violated. Hence, if the component is a cycle, it must be even and alternating. Finally, assume the component is a path. Then, we must only show that each end vertex is weak with respect to exactly one of the matchings. Clearly, each end vertex is already adjacent to an edge of one of the matchings. Suppose it was adjacent to an edge e from the other matching, without loss of generality, say $e \in M_{1}-M_{2}$. Since we can now extend the path in question, we violate the fact that our vertex was an end vertex of a path and that this path was a component of H . Thus, we must have one of the three possibilities listed above.

We now present Berge's [2] characterization of maximum matchings.
Theorem 7.1.1 A matching M in a graph G is a maximum matching if, and only if, there exists no M-augmenting path in G.

Proof. Let M be a matching in G and suppose that G contains an M-augmenting path

$$
P: v_{0}, v_{1}, \ldots, v_{k}
$$

where k is clearly odd. If M_{1} is defined to be

$$
\begin{aligned}
M_{1}= & \left(M-\left\{v_{1} v_{2}, v_{3} v_{4}, \ldots, v_{k-2} v_{k-1}\right\}\right) \\
& \cup\left\{v_{0} v_{1}, v_{2} v_{3}, \ldots, v_{k-1} v_{k}\right\},
\end{aligned}
$$

then M_{1} is a matching in G, and it contains one more edge than M; thus, M is not a maximum matching.

Conversely, suppose that M is not a maximum matching and there does not exist an M-augmenting path and let M_{1} be a maximum matching in G. Now, consider the spanning subgraph H, where $E(H)$ is the symmetric difference of M and M_{1} (that is, $\left.\left(M-M_{1}\right) \cup\left(M_{1}-M\right)\right)$. By Lemma 7.1.1, we know the possibilities for the components of H. By our earlier observations, we know that some alternating path in H must contain more edges of M_{1} than M, since M_{1} contains more edges than M. But, then, this path must be an M-augmenting path in G, contradicting our assumptions that
there were no augmenting paths in G.

The situation presented in the job assignment problem is very common. One often wishes to find a matching that uses every vertex in some set. Given a matching M, we will say that a set S is matched under M if every vertex of S is incident to an edge in M. For bipartite graphs, Hall [11] first determined necessary and sufficient conditions under which a set could be matched.

Theorem 7.1.2 Let $G=(X \cup Y, E)$ be a bipartite graph. Then X can be matched to a subset of Y if, and only if, $|N(S)| \geq \mid S$ for all subsets S of X.

Proof. Suppose that X can be matched to a subset of Y. Then, since each vertex of X is matched to a distinct vertex of Y, it is clear that $|N(S)| \geq|S|$ for every subset S of X.

Conversely, suppose that G is bipartite and that X cannot be matched to a subset of Y. We wish to construct a contradiction to the assumed neighborhood conditions. Thus, consider a maximum matching M in G. By our assumptions, the edges of M are not incident with all the vertices of X. Let u be a vertex that is weak with respect to M and let A denote the set of all vertices of G connected to u by an M-alternating path. Since M is a maximum matching, it follows from Berge's theorem (Theorem 7.1.1) that u is the only weak vertex of A. Let $S=A \cap X$ and $T=A \cap Y$.

Clearly, the vertices of $S-\{u\}$ are matched with vertices of T; therefore, $|T|=|S|-1$ and $T \subseteq N(S)$. In fact, T must equal $N(S)$ since every vertex in $N(S)$ is connected to u by an alternating path. But then $|N(S)|=|S|-1<|S|$ contradicting our neighborhood assumption.

An easy and well-known corollary to Hall's theorem can now be presented.
Corollary 7.1.1 If G is a k-regular bipartite graph with $k>0$, then G has a perfect matching.

Proof. Let $G=(X \cup Y, E)$ be a k-regular bipartite graph. Then $k|X|=k|Y|=\mid E$, and since $k>0$, we see that $|X|=|Y|$. For any $A \subseteq V(G)$, let E_{A} be the set of edges of G incident with a vertex of A. Let $S \subseteq X$ and consider E_{S} and $E_{N(S)}$. By the definition of $N(S)$, we see that $E_{S} \subseteq E_{N(S)}$. Thus,

$$
k|N(S)|=\left|E_{N(S)}\right| \geq\left|E_{S}\right|=k|S|,
$$

and so $|N(S)| \geq|S|$ Thus, by Hall's theorem, X can be matched to a subset of Y. But since $|X|=|Y|$ we see that G must contain a perfect matching.

Hall's theorem is a very flexible and useful result. It can be seen from many different points of view, and it can be stated in many ways. We shall now state it in set theoretic terms. To do this, we need some terminology. Given sets S_{1}, \ldots, S_{k}, we say any element $x_{i} \in S_{i}$ is a representative for the set S_{i} which contains it.

Our purpose is to find a collection of distinct representatives for the sets S_{1}, \ldots, S_{k}. This collection is usually known as a system of distinct representatives or a transversal of the sets. From a graph point of view, we could use a vertex s_{i} to represent each set S_{i}. We could also use a distinct vertex u_{j} to represent each of the elements x_{j} in each of the sets. We then join vertices s_{i} and u_{j} if, and only if, the element x_{j} is in the set S_{i}. In this way, we see that $N\left(s_{i}\right)=\left\{u_{j} \mid x_{j} \in S_{i}\right\}$. It is now easy to see that finding a system of distinct representatives is equivalent to finding a matching of the s_{i} 's into a subset of the u_{j} 's. We now restate Hall's theorem in set terms.

The SDR Theorem A collection $S_{1}, S_{2}, \ldots, S_{k}, k \geq 1$ of finite nonempty sets has a system of distinct representatives if, and only if, the union of any t of these sets contains at least t elements for each $t,(1 \leq t \leq k)$.

Another popular version of Hall's theorem takes the form of a statement on marriage. Our goal this time is to match as many men to women as possible so that the maximum number of couples can be married. This matching of men to women is the reason Hall's theorem is often called the marriage theorem.

The Marriage Theorem Given a set of n men and a set of n women, let each man make a list of the women he is willing to marry. Then each man can be married to a woman on his list if, and only if, for every value of $k(1 \leq k \leq n)$, the union of any k of the lists contain at least k names.

We now consider a related result from König [12] and Egerváry [6]. A set C of vertices is said to cover the edges of a graph G (or be an edge cover), if every edge in G is incident to a vertex in C. The minimum cardinality of an edge cover in G is denoted $\alpha(G)$. In Figure 7.1.3 we see a bipartite graph with a matching (dashed edges). The solid vertices form a cover in this graph.

Figure 7.1.3. A matching and cover in a graph.
The König-Egerváry theorem relates matchings and covers. The proof technique is
reminiscent of those already seen in this section.
Theorem 7.1.3 If $G=(X \cup Y, E)$ is a bipartite graph, then the maximum number of edges in a matching in G equals the minimum number of vertices in a cover for $E(G)$, that is, $\beta_{1}(G)=\alpha(G)$.

Proof. Let a maximum matching in G contain $\beta_{1}(G)=m$ edges and let a minimum cover for $E(G)$ contain $\alpha(G)=c$ vertices. Note that $c \geq m$ always holds.

Let M be a maximum matching in G. Also let W be those vertices of X that are weak with respect to M. Note that $|M|=|X|-|W|$ Let S be those vertices of G that are connected to some vertex in W by an alternating path. Define $S_{X}=S \cap X$ and $S_{Y}=S \cap Y$.

From the definition of S and the fact that no vertex of $S_{X}-W$ is weak, we see that $S_{X}-W$ is matched under M to S_{Y} and that $N\left(S_{X}\right)=S_{Y}$. Since $S_{X}-W$ is matched to S_{Y}, we see that $\left|S_{X}\right|-\left|S_{Y}\right|=|W|$

Let $C=\left(X-S_{X}\right) \cup S_{Y}$. Then C is a cover for $E(G)$, for if it were not, there would be an edge $v w$ in G such that $v \in S_{X}$ and $w \notin S_{Y}=N\left(S_{X}\right)$. Hence,

$$
|C|=|X|-\left|S_{X}\right|+\left|S_{Y}\right|=|X|-|W|=|M| .
$$

Thus, $c=m$, and the proof is complete.

The form of the König-Egerváry theorem should by now be a tipoff that something deeper is going on here. The min-max form that we saw in Menger's theorem and in the max flow-min cut theorem is once again present. Thus, we should expect that these results are closely related (see the exercises) and that flows could be used to prove results about matchings. We now investigate this connection.

Figure 7.1.4. The network N_{G}.
Given a bipartite graph $G=(X \cup Y, E)$, we construct a network N_{G} (see Figure 7.1.4) corresponding to G by first orienting all edges of G from X to Y. Now, insert a source vertex s with arcs to all vertices of X and a sink vertex t with arcs from all vertices of Y. We assign the capacity of all arcs out of s or into t as 1 . The capacities of all arcs from X to Y are set to ∞. With this network in mind, we are now able to show a
connection between matchings and flows.
Theorem 7.1.4 In a bipartite graph $G=(X \cup Y, E)$, the number of edges in a maximum matching equals the maximum flow in the network N_{G}.

Proof. Let M be a maximum matching in G. For each edge $x y$ in M, we use the directed path s, x, y, t to flow 1 unit from s to t in N_{G}. It is clear that these paths are all disjoint except for s and t. Thus, $F \geq|M|=\beta_{1}(G)$.

Now let f be an integral flow function on the network N_{G} corresponding to G. All the directed paths between s and t have the form s, x, y, t. If such a path is used to carry flow from s to t, then no other arc can be used to carry flow to y. Also, no other arc can be used to carry flow out of x. Then the set of edges $x y$ for which $f(x \rightarrow y)=1$ determines a matching in G. Thus, $\beta_{1}(G)=|M| \geq F$, and this, combined with our previous observations, shows that $\beta_{1}(G)=|M|=F$.

It is a simple matter now to deduce from the max-flow min-cut theorem and Theorem 7.1.3 that $\alpha(G)$ must equal the capacity of a minimum cut. But we can do more than just state this equality; we can use cuts to determine the cover. Suppose that (C, \bar{C}) is a cut of minimum capacity in N_{G}. If we let $A=X \cap \bar{C}$ and $B=Y \cap C$, then it is easy to see that $A \cup B$ is a cover for G. Further, since

$$
c(s, A)+c(B, t)=|A \cup B|
$$

(that is, since the capacity of the arcs from s to A and those from B to t total $|A \cup B|$, we see that $A \cup B$ must be a minimum cover. Thus, we can use flows and cuts to find not only maximum matchings but also minimum covers as well. Does all this remind you of the way we selected the cover in the proof of Theorem 7.1.3?

Section 7.2 Matching Algorithms and Marriage

It turns out that in the setting of bipartite graphs, we can easily apply Berge's ideas and use augmenting paths to build maximum matchings. We now present a labeling algorithm to find a maximum matching in a bipartite graph. This algorithm assumes a given matching M is known and attempts to extend M by finding an augmenting path. This is done by trying to follow all possible augmenting paths. As we go, we "mark" vertices using edges not in M while walking from X to Y, and we mark vertices using edges in M while walking from Y to X. Hence, we essentially trace all possible alternating paths as we go. This algorithm is a special case of the network flow algorithm of Ford and Fulkerson [9].

Algorithm 7.2.1 A Maximum Matching in a Bipartite Graph.

Input:	Let $G=(X \cup Y, E)$ be a bipartite graph and suppose that		
	$X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$. Further,		
	let M be any matching in G (including the empty matching).		
Output:	A matching larger than M or the information that		
the present matching is maximum.		,	We now execute the following labeling steps until no step
:---			
can be applied.			

1. Label with an * all vertices of X that are weak with respect to M. Now, alternately apply steps 2 and 3 until no further labeling is possible.
2. Select a newly labeled vertex in X, say x_{i}, and label with x_{i} all unlabeled vertices of Y that are joined to x_{i} by an edge weak with respect to M. Repeat this step on all vertices of X that were labeled in the previous step.
3. Select a newly labeled vertex of Y, say y_{j}, and label with y_{j} all unlabeled vertices of X which are joined to y_{j} by an edge in M. Repeat this process on all vertices of Y labeled in the previous step.

Notice that the labelings will continue to alternate until one of two possibilities occurs:

E1: A weak vertex in Y has been labeled.
$E 2$: It is not possible to label any more vertices and $E 1$ has not occurred.
If ending $E 1$ occurs, we have succeeded in finding an M-augmenting path, and we can construct this path by working backwards through the labels until we find the vertex of X which is labeled *. The purpose of the labels is to allow us to actually determine an M-augmenting path. We can then extend our matching as in Theorem 7.1.1 and repeat the algorithm on our new matching. Our next theorem shows that if $E 2$ occurs, M is already a maximum matching. The proof is reminiscent of that of the König-Egerváry theorem.

Theorem 7.2.1 Suppose that Algorithm 7.2.1 has halted with ending $E 2$ occurring and having constructed matching M. Let U_{X} be the unlabeled vertices in X and L_{Y} the labeled vertices in Y. Then $C=U_{X} \cup L_{Y}$ covers the edges of $G,|C|=|M|$ and M is a maximum matching in G.

Proof. Suppose that C does not cover the edges of G. Then there must exist an edge from $L_{X}=X-U_{X}$ to $U_{Y}=Y-L_{Y}$. Suppose there was such an edge, call it $e=x y$, where $x \in L_{X}$ and $y \in U_{Y}$. If e is not in M, then since x is labeled, it follows from step 2 that y is labeled, and this condition contradicts the fact that L_{Y} contains all the labeled vertices of Y. Thus, $e \in M$, and so it follows from step 3 that the label on x is y. It also follows from the algorithm that y must be labeled; and that in fact, it must have received that label prior to x receiving its label. But this condition again contradicts the fact that
L_{Y} contains all the labeled vertices of Y. Thus, we conclude there are no edges from $X-U_{X}$ to $Y-L_{Y}$, and so it must be the case that C covers all the edges of G.

Now, consider $y \in L_{Y}$. Since y is labeled and $E 1$ has not happened, y must be incident with an edge of M (exactly one such edge since M is a matching). Suppose that $x y$ is this edge. By step 3, the vertex x must be labeled, so x is not in U_{X}. Consider some $x_{1} \in U_{X}$. Since x_{1} is not labeled, it must be incident with an edge of M, or it would have received the label $*$ in step 1 . Since M is a matching, x_{1} is incident with exactly one edge of M. Let this edge be $x_{1} y_{1}$. If y_{1} were labeled, by step 3 we would see that x_{1} would also be labeled, but $x_{1} \in U_{X}$. Then y_{1} must be unlabeled, and thus, none of the edges of M which are incident to vertices in U_{X} are the same as any of the edges of M with incidences in L_{Y}. Since every edge of M has an end vertex in either U_{X} or L_{Y}, there must be as many edges in M as vertices in C; that is, $|C|=|M|$. Since C covers the edges of G, by Theorem 7.1.3, M must be a maximum matching, and so the proof is complete.

Example 7.2.1. We now apply Algorithm 7.2.1 to the bipartite graph of Figure 7.2.1.

Figure 7.2.1. A bipartite graph $G=(X \cup Y, E)$.
We select the edge $v_{1} u_{1}$ as our initial matching M. We now apply Algorithm 7.2.1.
Step 1: Label v_{2}, v_{3}, v_{4} with *.
Step 2: Select v_{2} and label u_{1}, u_{3}, u_{4} with v_{2}.
Step 3: Select u_{1} and label v_{1} with u_{1}.
Step 2: Select v_{1} and label u_{2} with v_{1}.
Note that no other labeling is possible.
Since the labeling included weak vertices in Y, condition $E 1$ holds. Note that the path $P: v_{2}, u_{3}$ is augmenting; thus our new matching is now $M=\left\{v_{1} u_{1}, v_{2} u_{3}\right\}$, and we repeat Algorithm 7.2.1 on this M.

To see what this algorithm is really doing, we can trace what happens in each pass of the algorithm. We began labeling v_{2} and followed by labeling the weak neighbors u_{1}, u_{3} and u_{4}. From these vertices we looked instead for edges in the matching M and labeled v_{1}. Then, we again reversed our thinking and looked for weak neighbors of this
vertex. In Figure 7.2.2 we picture the situation after the labeling was completed. Note the layering of vertices and the fact that edges between consecutive layers were introduced in the same step of the algorithm. The tree that has been "grown" by the algorithm has the property that each path from the initial vertex to a leaf is an alternating path. When the tree has been grown to its utmost, the algorithm halts, and any path from the root (the vertex labeled *) to a weak leaf is augmenting. We retrace any such path by following the labels assigned to the vertices. It has become customary to call such a tree a hungarian tree. Note that such a tree has been started for every vertex labeled *, but not all have been successful in finding an augmenting path.

Figure 7.2.2. A hungarian tree grown in pass one.
The second pass of Algorithm 7.2.1 (see Figure 7.2.3) produces:
Step 1: Label v_{3}, v_{4} with *.
Step 2: Select v_{4} and label u_{1}, u_{3} with v_{4}.
Select v_{3}; nothing more can be labeled.
Step 3: Select u_{1} and label v_{1} with u_{1}. Select u_{3} and label v_{2} with u_{3}.
Step 2: Select v_{1} and label u_{2}, u_{4} with v_{1}.

Figure 7.2.3. The hungarian tree rooted at v_{4} in pass two.
The labeling halts, and we have found an augmenting path, namely $P: u_{4}, v_{1}, u_{1}, v_{4}$. Using P, we extend the matching to

$$
M=\left\{v_{2} u_{3}, u_{4} v_{1}, u_{1} v_{4}\right\},
$$

and we repeat Algorithm 7.2.1 again on M.

Step 1: Label v_{3} with *.
Step 2: Select v_{3} and label u_{1}, u_{3} with v_{3}.
Step 3: Select u_{1} and label v_{4} with u_{1}; then select u_{3} and label v_{2} with u_{3}.
Step 2: Select v_{2} and label u_{4} with v_{2};
then select v_{4} and note that no further labeling can be done.
Step 3: Select u_{4} and label v_{1} with u_{4}.
Step 2: Select v_{1} and label u_{2} with v_{1}.
Step 3: No labeling is possible, and the algorithm halts.
We now interchange edges on the path $P: u_{2}, v_{1}, u_{4}, v_{2}, u_{3}, v_{3}$ to obtain the maximum matching $M=\left\{u_{1} v_{4}, v_{3} u_{3}, v_{2} u_{4}, v_{1} u_{2}\right\}$ (see Figure 7.2.4).

Figure 7.2.4. The hungarian tree from pass three.
We are now ready to consider a strengthening of the job assignment problem. We wish to include information about the relative suitabilities of the job candidates for the various jobs. The problem to be considered will be restricted to the case in which there are n candidates for n jobs, and each candidate has a measure of suitability for each job. That is, we have assigned a weight function to the edges of $K_{n, n}$. It is clear that it may not be possible to assign each applicant to the job he or she is best suited for, since two applicants might be best suited for the same job. Thus, our goal is to find the overall best solution, that is, the solution with the optimal sum of the weights assigned to the edges of the matching.

To attack this problem, we will find it more convenient to have our weight function represent a measure of the applicant's unsuitability for the job. Then, the larger the weight, the more unsuitable the applicant is for the job. For any matching M, we define the weight of the matching to be $W(M)=\sum_{e \in M} w(e)$. Thus, an optimal solution will be a perfect matching with $W(M)$ a minimum. We now present an algorithm for finding such a solution.

We begin by representing our graph in matrix form, $U=\left[w_{i, k}\right]$ where $w_{i, k}$ is the weight of the edge joining j_{i} and a_{k} (that is, the unsuitability of applicant k to job i). An
example of such a matrix is now given.

U	a_{1}	a_{2}	a_{3}	a_{4}
j_{1}	4	6	14	11
j_{2}	7	2	8	9
j_{3}	3	13	1	4
j_{4}	5	2	0	13

It is important to note that our solution is unchanged if we subtract the same number from all members of some row or some column. This follows since only one entry will be selected from any row or column; hence, the value of $W(M)$ for any matching M will be reduced by the same amount. Thus, we can make the entries in our unsuitability matrix easier to deal with by first subtracting from each row the minimum entry in that row. The resulting matrix still has all nonnegative entries, which we hope are smaller than before. Our example matrix thus becomes:

U	a_{1}	a_{2}	a_{3}	a_{4}
j_{1}	0	2	10	7
j_{2}	5	0	6	7
j_{3}	2	12	0	3
j_{4}	5	2	0	13

Now, subtract from each column the smallest entry in that column to obtain a further reduced unsuitability matrix. Our example is then:

U	a_{1}	a_{2}	a_{3}	a_{4}
	0^{*}	2		
j_{1}	0^{*}	2	10	4
j_{2}	5	0^{*}	6	4
j_{3}	2	12	0	0^{*}
j_{4}	5	2	0^{*}	10

Our problem now is to select numbers from the table, no two in the same row or column, with as small a sum as possible. Since our entries are all nonnegative, the smallest sum we could hope for is zero. Thus, if n zeros can be found, no two in the same row or column, an optimal solution will be obtained. In our example, a solution is easily found. We select the entries starred above.

The suspicious reader is now asking what happens if at this stage we cannot find a suitable set of n "independent zeros," or must this always be the case. The answer is that we are not always sure of having enough zeros at this stage to represent a perfect matching in our graph. Sometimes, further adjustments must be made. Consider the following unsuitability matrix.

U	a_{1}	a_{2}	a_{3}	a_{4}
j_{1}	6	8	2	7
j_{2}	5	8	13	9
j_{3}	2	8	10	9
j_{4}	4	12	8	11

Then, after reducing the rows followed by the columns, we are left with the following matrix.

U	a_{1}	a_{2}	a_{3}	a_{4}
j_{1}	4	3	0	1
j_{2}	0	0	8	0
j_{3}	0	3	8	3
j_{4}	0	5	4	3

This matrix does not contain four independent zeros since all the zeroes are contained in the first column and the first two rows. This can be seen by crossing with a line the rows and columns containing zeros. In the graph, then, the independent zeros represent the edges of the matching, while the lines drawn show the vertices "covered" by the vertex corresponding to the row or column in which the line was drawn. Our adjustment procedure is as follows:

1. Let m be the smallest number that is not included in any of our crossed rows or columns.
2. Subtract m from all uncrossed numbers.
3. Leave numbers which are crossed once unchanged.
4. Add m to all numbers which are crossed twice.

This procedure produces at least one more zero in the uncrossed portion of our matrix and leaves all the zeros unchanged, unless they happen to be crossed twice. Can you explain why this adjustment procedure works? Our example becomes:

U	a_{1}	a_{2}	a_{3}	a_{4}
j_{1}	7	3	0	1
j_{2}	3	0	8	0
j_{3}	0	0	5	0
j_{4}	0	2	1	0

The procedure described here will always yield a set of n independent zeros after a finite number of repetitions. The algorithm presented above to solve our optimal matching problem is usually known as the hungarian algorithm, in honor of König and Egerváry. An alternate form of the König-Egerváry theorem can now be stated. We derive its proof from the first form.

Theorem 7.2.2 Let S be any $m \times n$ matrix. The maximum number of independent
zeros which can be found in S is equal to the minimum number of lines (either rows or columns) which together cover all the zeros of S.

Proof. Construct a bipartite graph $G=(X \cup Y, E)$ modeling our matrix as follows. Let the vertices of X correspond to the rows of our matrix and the vertices of Y to the columns. We join x_{i} and y_{j} if, and only if, entry i, j of our matrix is zero. Then, a maximum independent set of zeros corresponds to a maximum matching of G, and a minimum set of lines covering all the zeros corresponds to a minimum covering of G. Thus, by Theorem 7.1.3 the result follows.

Suppose we now consider the job assignment problem from the greedy point of view. Can we simply begin with the edge of minimum cost and somehow extend to a matching of minimum cost? The answer is that we can if we are careful about our point of view. Rather than build a matching by greedily taking edges, we shall set our view on the vertices involved. Given a bipartite graph $G=\left(V_{1} \cup V_{2}, E\right)$, we say a subset I of V_{1} is matching-independent for matchings of V_{1} into V_{2} if there is a matching which matches all the elements of I to elements of V_{2}. We wish to build a maximum sized matching-independent set in a greedy fashion. Thus, if we have a set I that is matchingindependent, we would add to I the vertex x of V_{1} having cheapest incident edge that still allows us to match $I \cup\{x\}$ into V_{2}. When we can no longer do this, we stop. The question of interest now is: How do we know that we have formed a maximum sized matching-independent set when this process halts? That this is indeed the case can be concluded from the next result.

Theorem 7.2.3 Matching-independent sets for matchings of V_{1} into V_{2} satisfy the following rule:

If I and J are matching-independent subsets of V_{1} and $|I|<|J|$ then there is an element x of J such that $I \cup\{x\}$ is matching-independent.

Proof. Suppose that M_{1} is a matching of I into V_{2} and M_{2} is a matching of J into V_{2}. Then, by Lemma 7.1.1, the spanning subgraph H with $E(H)=\left(M_{1}-M_{2}\right) \cup\left(M_{2}-M_{1}\right)$ has connected components of only three possible types. Since $\left|M_{2}\right|>\left|M_{1}\right|$ at least one of these components must be of type 3 in Lemma 7.1.1. Thus, there is a path P whose edges are alternately in M_{2} and M_{1} and whose first and last edges are in M_{2}. Each vertex of P incident to an edge from M_{1} is also incident to an edge from M_{2}. Further, there is a vertex x in V_{1} (and J) incident to an edge from M_{2}, and x is not incident to any edge from M_{1}. Now the set of edges

$$
M=\left(M_{1}-E(P)\right) \cup\left(E(P)-M_{1}\right)
$$

forms a matching with one more edge than M_{1}. Also, M is a matching of $I \cup\{x\}$ into V_{2}. Thus, $I \cup\{x\}$ is matching-independent, and since $x \in J$, the proof is complete.

To actually use the greedy approach to construct a maximum sized matching of minimum weight, we must determine a method that allows us to select the vertex x we wish to add to our matching-independent set. To do this, we must also keep track of the edges that are presently matching I into V_{2}. Otherwise, we would face the possibility of having to check all possible subsets of V_{2} in a search for the matching. Since this is clearly an exponential process, the bookkeeping of the intermediate matchings is necessary. Applying our methods of finding alternating paths allows us to construct the maximum sized matching-independent set, and it is an exercise to show that the corresponding matching is of minimum cost.

Can we vary the assignment problem somewhat? For a suitability weight function w, we can change the function we are optimizing from

$$
\sum_{e \in M} w(e) \text { to } \min _{e \in M}\{w(e)\}
$$

That is, suppose we try to maximize the minimum weight of an edge in the matching. This is the mathematical version of the old proverb that the strength of a chain equals the strength of its weakest link. This is known as the bottleneck assignment problem. It turns out that we can solve the bottleneck assignment problem by repeated applications of any algorithm for finding matchings in bipartite graphs. Suppose we begin with any matching M in the bipartite graph G. We can easily find the minimum weight of an edge in M, say b. We form a new graph G_{b} from G by removing all edges from G with weight b or less. If we now find a maximum matching in G_{b}, and if it is a perfect matching, then each of its edges must have weight greater than b, so we have improved the matching. If no such matching can be found, then the previous matching was the best. We continue this process until the matching which maximizes the minimum weight of an edge is found. Can you formally write an algorithm that solves the bottleneck assignment problem?

We conclude this section with a study of some interesting mathematical properties of marriage. For the remainder of this section we shall use some notions about matrices to study marriages. We take the marriage point of view because of the interesting and unusual manner the statements of our results will take. We begin with some ideas on matrices.

A matrix $D=\left(d_{i, j}\right)$ is doubly stochastic if each $d_{i, j} \geq 0$ and the sum of the entries in any row or column equals 1. A permutation matrix is any matrix obtained from the identity matrix I by performing a permutation on the rows of I. A well-known result on doubly stochastic matrices from Birkhoff [4] and Von Neumann [15] states that any doubly stochastic $n \times n$ matrix D can be written as a combination of suitable permutation matrices. That is, there exist constants $c_{1}, c_{2}, \ldots, c_{n}$ and permutation matrices P_{1}, \ldots, P_{n} such that $D=\sum_{i=1}^{n} c_{i} P_{i}$.

We can use matchings to indicate an algorithm for finding the constants and the decomposition of D into permutation matrices.

Suppose we model our doubly stochastic matrix D with a bipartite graph. Let vertices $r_{1}, r_{2}, \ldots, r_{n}$ represent the rows of D and let vertices k_{1}, \ldots, k_{n} represent the columns. We draw an edge from r_{i} to k_{j} if, and only if, entry $d_{i, j}$ of D is nonzero. Then the permutation matrix P_{1} represents the edges of a matching in this bipartite graph and the constant c_{1} is the minimum weight of an edge in this matching. We can now write D as $D=c_{1} P_{1}+R$, where the matrix R represents the remaining edges of our bipartite graph. The old edges were adjusted by subtracting c_{1} from the weight of each edge of the matching and removing any edge with weight zero. We now repeat this process on R.

Suppose that at some stage we are unable to find a matching. Then by Hall's theorem there must exist some set A of vertices representing rows of D such that $|A|>|N(A)|$. That is, there are more rows than "neighboring" columns. Now, consider what this means in our matrix D. If each of these rows sums to 1 (counting the entries that were possibly removed prior to this), then the total value of the weights in these rows is $|A|$ But then this amount must also be distributed over $|N(A)|$ columns, which means some column must sum to more than 1 , contradicting that D was doubly stochastic. Thus, we will be able to find a matching at each stage.

We now formally state the algorithm for finding this convex sum of permutation matrices.

Algorithm 7.2.2 Decomposing Doubly Stochastic Matrices.

Input: A doubly stochastic matrix D.
Output: A convex sum of permutation matrices $c_{1} P_{1}+\cdots+c_{n} P_{n}$.

1. Set $t_{1} \leftarrow 1, X \leftarrow D$ and $k \leftarrow 1$.
2. Having a doubly stochastic matrix X and nonnegative numbers $t_{1}, t_{2}, \ldots, t_{k}$ and permutation matrices P_{1}, \ldots, P_{k-1} such that
$D=t_{1} P_{1}+\cdots+t_{k-1} P_{k-1}+t_{k} X$ and $\sum_{i=1}^{k} t_{i}=1$.
If X is a permutation matrix,
then set $P_{k} \leftarrow X$ and halt;
else use bipartite graphs to find a permutation matrix X^{*} such that $x_{i j}{ }^{*}=0$ whenever $x_{i j}=0$.
3. The n entries $x_{i, j}$ of X for which $x_{i j}{ }^{*}=1$ are all positive entries. Let c be the least of these entries (note $c<1$).
Set $t \leftarrow t_{k}, \quad t_{k} \leftarrow c t, \quad t_{k+1} \leftarrow(1-c) t$ and $P_{k} \leftarrow X^{*}$. Now, replace X by $\frac{1}{1-c}\left(X-c P_{k}\right)$, set $k \leftarrow k+1$ and go to step 2 .

Using doubly stochastic matrices, we find that another unusual theorem about marriage is now possible. Suppose we consider a suitability matrix describing the marriage problem. That is, given a set of n men and another set of n women, let the matrix $S=\left(s_{i, j}\right)$ be defined so that $s_{i, j}$ is a measure of the suitability or "happiness" of a marriage between man i and woman j. Our goal is to study the type of marriage that brings this collection of men and women the most "happiness." In particular, we will compare monogamy and polygamy. These relationships can be shown in a matrix $M=\left(m_{i j}\right)$. Each row of the matrix M represents a man in our set of men and each column a woman. The entry $m_{i, j}$ in our marriage matrix M represents the fraction of time man i spends with woman j. Thus, monogamy would be a permutation matrix and polygamy a general doubly stochastic matrix. Our measure of the happiness of the present marriage relationship M will be $h(M)=\sum_{i, j} s_{i, j} m_{i, j}$. Our solution is then to find $\max _{M} h(M)$, where the maximum is taken over all doubly stochastic matrices M. But we note that

$$
\begin{aligned}
\max _{M} h(M) & =\max _{c_{1}, \ldots, c_{n}} h\left(c_{1} P_{1}+\cdots+c_{n} P_{n}\right) \\
& =\max _{c_{1}, \ldots, c_{n}} c_{1} h\left(P_{1}\right)+\cdots+c_{n} h\left(P_{n}\right) \\
& =h\left(P_{i}\right) \text { for some } i .
\end{aligned}
$$

(The above follows easily for the maximum $h\left(P_{i}\right)$). That is, the maximum corresponds to the matching represented by some permutation matrix. In other words, monogamy is the preferred mathematical state of marriage. We have just proven the following interesting marriage theorem.

Theorem 7.2.4 Among all forms of marriage, monogamy is optimal.

We conclude our study of marriage by considering its stability. Suppose we have a set of n men m_{1}, \ldots, m_{n} and n women w_{1}, \ldots, w_{n}. Suppose, too, that man m_{1} is married to woman w_{1} and man m_{2} to woman w_{2}. Further suppose that in reality m_{2} prefers w_{1} to his own wife and w_{1} prefers m_{2} to her own husband. It is easy to believe this is not a "stable" situation, in fact, we call such a pair of marriages unstable.

Let's construct two preference tables. In each table, the rows represent the men and the columns the women. The entries in any row of the first preference table are the integers 1 to n . This represents the order of preference of the women by the man corresponding to this row (with 1 being first choice). A similar description applies to the columns of the women's preference table.

Our problem, then, is given the two preference tables, can we find a stable set of marriages. That is, can we find a matching in which no pair of independent edges is unstable. We now describe an algorithm to produce our stable matching.

Algorithm 7.2.3 Stable Matching Algorithm.

Input: Given preference tables for the men and the women.
Output: A set of stable marriages

1. Each man proposes to his first choice.
2. The women with two or more proposals respond by rejecting all but the most favorable offer. However, no woman accepts a proposal.
3. The men that were rejected propose to their next choice. Those that were not rejected continue their offers.
4. We repeat step 3 until we reach a stage where no proposal is rejected.

Clearly, each woman can only reject a finite number (namely $n-1$) of proposals, and so this process must eventually stop. We illustrate our algorithm on the following preference tables.

men	w_{1}	w_{2}	w_{3}	w_{4}
m_{1}	1	2	3	4
m_{2}	1	4	3	2
m_{3}	2	1	3	4
m_{4}	4	2	3	1

women	w_{1}	w_{2}	w_{3}	w_{4}
m_{1}	3	3	2	3
m_{2}	4	1	3	2
m_{3}	2	4	4	1
m_{4}	1	2	1	4

The set of proposals P_{i} appears below; starred proposals were rejected.

proposals	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}
m_{1}	1^{*}	1	1	1^{*}	2^{*}	3
m_{2}	1^{*}	4	4	4	4	4
m_{3}	2	2	2^{*}	1	1	1
m_{4}	4	4^{*}	2	2	2	2

From this table we see that the final set of marriages is:

$$
\begin{array}{ll}
\operatorname{man} m_{1} & \text { with woman } w_{3} \\
\operatorname{man} m_{2} & \text { with woman } w_{4} \\
\operatorname{man} m_{3} & \text { with woman } w_{1} \\
\operatorname{man} m_{4} & \text { with woman } w_{2} .
\end{array}
$$

It is easy to verify that this set of marriages is stable.
We now wish to prove we actually reach a stable matching. Suppose this were not the case; that is, suppose there was an unstable pair of marriages. Without loss of generality, let this pair be $\left(m_{1}, w_{1}\right)$ and $\left(m_{2}, w_{2}\right)$.

But if m_{2} prefers w_{1}, he would have proposed to w_{1} before he proposed to his present wife. Then w_{1} would not have rejected m_{2} if she actually preferred him over m_{1}. Hence, we could not have reached this unstable situation. Thus, the marriages cannot be unstable. We have now shown the following result, due originally to Gale and Shapely [10].

Theorem 7.2.5 Given n men and n women, there always exists a set of stable marriages.

Section 7.3 Factoring

We now wish to study matchings in a generalized setting. In addition, we want to consider relaxations of the concept of matchings. A perfect matching is often called a 1factor, since the matching is a 1-regular spanning subgraph of the original graph. It is not a difficult leap to the idea of an r-factor, that is, an r-regular spanning subgraph of the original graph. We begin with a natural result.

Theorem 7.3.1 If G is a graph of order $2 n$ and $\delta(G) \geq n$, then G contains a 1-factor.
Proof. This result follows as a consequence of Dirac's theorem (Corollary 5.2.1).

We see that an algorithm for finding such a matching is apparent. Having obtained an r-matching, scan the remaining $(2 n-2 r)$ vertices to see if any pair is joined by an edge. If this fails to be the case, choose any two of these vertices, say a and b, and scan the edges $x y$ of the matching until one is found such that a is adjacent to x and b is adjacent to y. Then, replace $x y$ by the edges $a x$ and $b y$ and repeat this process.

The fundamental result on 1 -factors is from Tutte [14]. The proof presented here is that of Anderson [1]. We denote the number of components of odd order in a graph G by $k_{o}(G)$.

Theorem 7.3.2 (Tutte [14]) A nontrivial graph G has a 1 -factor if, and only if,
$k_{o}(G-S) \leq|S|$ for every proper subset S of $V(G)$.
Proof. Let F be a 1-factor of G and suppose there exists a proper subset S of $V(G)$ such that $k_{o}(G-S)>|S|$ For each of the odd components C of $G-S$, there must exist an edge in F that goes from C to S. But this implies that there is a vertex in S incident with at least two edges in F, which contradicts the definition of matching.

Conversely, note that $k_{o}(G-\phi) \leq|\varnothing|=0$. Thus, G has only even components, and the order n of G must, then, be even. Also, observe that for every proper subset S of $V(G)$, the numbers $|S|$ and $k_{o}(G-S)$ are of the same parity.

Now, we proceed by induction on the order of G. If $n=2$, then G must be K_{2}, and clearly G has a 1 -factor. Next, assume that for all graphs H of even order less than n, the condition $k_{o}(H-S) \leq|S|$ for every proper nonempty subset S of vertices implies H has a 1 -factor. Let G be a graph of even order n and assume that $k_{o}(G-S) \leq|S|$ for every proper subset S of $V(G)$. We now consider two cases.

Case 1. Suppose that $k_{o}(G-S)<|S|$ for all subsets S of $V(G)$ with $2 \leq|S|<n$. Since $k_{o}(G-S)$ and $|S|$ have the same parity, $k_{o}(G-S) \leq|S|-2$. Let $u v$ be an edge of G and consider $G-u-v$. Let S_{1} be a proper subset of $V(G-u-v)$. Thus,

$$
k_{o}\left(G-u-v-S_{1}\right) \leq\left|S_{1}\right|
$$

or else

$$
k_{o}\left(G-u-v-S_{1}\right)>\left|S_{1}\right|=\left|S_{1} \cup\{u, v\}\right|-2
$$

and, hence,

$$
k_{o}\left(G-\left(S_{1} \cup\{u, v\}\right)\right) \geq\left|S_{1} \cup\{u, v\}\right|
$$

which contradicts our assumptions. Then the matching obtained by applying the induction hypothesis, along with the edge $u v$, provides a 1-factor of G.

Case 2. Suppose that there exists some set S_{2} such that $k_{o}\left(G-S_{2}\right)=\left|S_{2}\right|$ Among all such sets, let S be one of maximum cardinality. Further, let $k_{o}(G-S)=|S|=t$ and let C_{1}, \ldots, C_{t} be the odd components of $G-S$. If E is an even component of $G-S$ and $x \in V(E)$, then $k_{0}(G-S-x$) would equal $|S \cup\{x\}|$, contradicting the fact that S was a set of maximum cardinality having this property. Thus, $G-S$ has no even components.

Let $S_{i}(i=1, \ldots, t)$ denote those vertices of S with adjacencies in C_{i}. Each S_{i} is nonempty, or else some C_{i} would be an odd component of G. The union of any k of the sets S_{1}, \ldots, S_{t} contains at least k vertices, or there exists an integer k such that the union U of some k of these sets contains less than k vertices. Thus, $k_{o}(G-U)>|U|$ which is a contradiction. Hence, by Hall's theorem (SDR), there exists a system of distinct representatives for the sets S_{1}, \ldots, S_{t}. This implies that in S there are distinct
vertices v_{1}, \ldots, v_{t} and that in each C_{i} there is a vertex u_{i} such that $v_{i} u_{i}$ is an edge of G.

Let W be a proper subset of $C_{i}-u_{i}$. Since $C_{i}-u_{i}$ has even order, $k_{o}\left(C_{i}-u_{i}-W\right)$ and $\mid W$ |have the same parity. If

$$
k_{o}\left(C_{i}-u_{i}-W\right)>|W|,
$$

then it must be that

$$
k_{o}\left(C_{i}-u_{i}-W\right) \geq|W|+2
$$

Thus,

$$
\begin{aligned}
k_{o}\left(G-\left(S \cup W \cup\left\{u_{i}\right\}\right)\right) & =k_{o}\left(C_{i}-u_{i}-W\right)+k_{o}(G-S)-1 \\
& \geq|S|+|W|+1 \\
& =\left|S \cup W \cup\left\{u_{i}\right\}\right|
\end{aligned}
$$

But this contradicts the maximality of S. Hence,

$$
k_{o}\left(C_{i}-u_{i}-W\right) \leq|W|
$$

and so by induction, each $C_{i}-u_{i}$ has a 1-factor. These 1-factors, together with the edges $u_{i} v_{i}$, then form the desired 1 -factor in G.

Berge [3] noticed a useful related fact stemming from the proof of Tutte's theorem. This observation is often called the Berge defect form of Tutte's theorem. From Tutte's theorem, we see that a graph G of even order p contains a perfect matching unless there exists some set of r vertices whose removal leaves a graph with more than r odd components. However, because G has even order, this forces the existence of at least $r+2$ odd components (see the proof). Further, the defect form also states that if G is a graph of odd order p, then G contains a maximum matching of size $\frac{1}{2}(p-1)$ unless there is some set of r vertices whose removal leaves a graph with at least $r+3$ odd components. This observation can be useful in dealing with graphs of odd order.

It is clear that every 1-regular graph contains (in fact, is) a 1-factor and that every 2 regular graph contains a 1 -factor (in fact, is 1 -factorable, that is, its edge set can be decomposed into 1 -factors) if, and only if, every component is an even cycle. The situation is not as simple for 3-regular graphs, however. Petersen [13] investigated 1factors in 3-regular graphs and showed that they need not contain a 1 -factor (see Figure 7.3.1). However, he was also able to show a situation in which such a graph would contain a 1 -factor.

Theorem 7.3.3 (Petersen [13]). Every bridgeless 3-regular graph G can be expressed as the edge sum of a 1 -factor and a 2 -factor.

Proof. It suffices to show that such a graph contains a 1 -factor since the remaining
edges form a 2 -factor. Suppose the graph G fails to contain a 1-factor. Then by Tutte's theorem, there exists in G some proper nonempty set S of k vertices such that $n=k_{o}(G-S)>|S|=k$. Suppose that C_{1}, \ldots, C_{n} are the odd components of $G-S$. There must exist an edge from each C_{i} to $S(1 \leq i \leq n)$, or else some C_{i} would be a 3 -regular graph of odd order, which is impossible. Further, since G is bridgeless, there cannot be a single edge joining S to any C_{i}. If there were exactly two edges joining S to some C_{i}, then again C_{i} would contain an odd number of vertices of odd degree. Thus, at least three edges join any C_{i} to S. Thus, there are at least $3 n$ edges joining S and the $C_{i}(1 \leq i \leq n)$. However, since each vertex of S has degree 3, there can be at most $3 k$ edges into S. But since $3 n>3 k$, a contradiction arises. Thus, no such set S can exist, and by Tutte's theorem, we see that G must contain a 1 -factor.

Figure 7.3.1. A 3-regular graph with no 1-factor.
Now that we know that every bridgeless 3-regular graph can be factored into a 1factor and a 2 -factor, it is natural to wonder if it can actually be 1 -factored. Petersen also showed that this is not the case. His example, which has become perhaps the most famous of all graphs, is shown in Figure 7.3.2.

Petersen also characterized those graphs which are 2-factorable. It turns out that the obvious necessary condition that the graph be $2 r$-regular for some $r \geq 1$ also suffices. The proof makes use of the fact that such graphs are eulerian.

Theorem 7.3.4 A nonempty graph G is 2-factorable if, and only if, G is $2 r$-regular ($r \geq 1$) for some integer r.

Proof. Clearly, if G is 2-factorable, then G is $2 r$-regular for some $r \geq 1$.

Figure 7.3.2. The Petersen Graph.
Conversely, let G be a $2 r$-regular graph ($r \geq 1$). Without loss of generality we may assume G is connected, for otherwise we would simply consider each component separately. Thus, we see that G is eulerian with circuit C. Let $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ and define a bipartite graph

$$
B=\left(V_{1} \cup V_{2}, E\right)
$$

from G as follows: Let

$$
\begin{gathered}
V_{1}=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}, V_{2}=\left\{w_{1}, w_{2}, \ldots, w_{p}\right\} \text { and } \\
E(B)=\left\{u_{i} w_{j} \mid v_{j} \text { immediately follows } v_{i} \text { on } C\right\} .
\end{gathered}
$$

The graph B is r-regular, and so by Corollary 7.1.1, B contains a perfect matching M_{1}. Then the graph $B-M_{1}$ is r - 1-regular and again by Corollary 7.1.1, $B-M$ contains a perfect matching M_{2}. Continuing in this manner, we see that $E(B)$ can be partitioned into matchings $M_{1}, M_{2}, \ldots, M_{r}$.

Corresponding to each matching M_{k} of B is a permutation π_{k} on the set of vertices defined by $\pi_{k}\left(v_{i}\right)=v_{j}$ if $u_{i} w_{j} \in E\left(M_{k}\right)$. We know that we can express π_{k} as the product of disjoint permutation cycles. Note that in this product, no permutation cycle is of length 1 , for this would imply that $\pi_{k}\left(v_{i}\right)=v_{i}$. But this implies that $u_{i} w_{i} \in E(B)$, and, hence, that $v_{i} v_{i}$ is an edge of C, contradicting the fact G is a graph. Further note that there is no permutation cycle of length 2 in the product since this would imply that $\pi_{k}\left(v_{i}\right)=v_{j}$ and $\pi_{k}\left(v_{j}\right)=v_{i}$. But this means that $u_{i} w_{j}$ and $u_{j} w_{i}$ are edges of B and that v_{j} both precedes and follows v_{i} on C. But this contradicts the fact that C is a circuit and, hence, has no repeated edges. Thus, we are able to conclude that each permutation cycle in the product of disjoint permutation cycles representing π_{k} has length at least 3 .

Each permutation cycle in π_{k} then gives rise to a cycle in G, and since the product of the permutation cycles is disjoint, the corresponding cycles span $V(G)$. But, these spanning cycles form a 2 -factor of G. Further, since the matchings $M_{1}, M_{2}, \ldots, M_{r}$
partition the edges of G, the 2 -factors that correspond to π_{1}, \ldots, π_{r} are mutually edge disjoint. Thus, G is 2-factorable.

We conclude this section by considering some special classes of graphs. The obvious starting point is the complete graphs. It turns out that we can produce very special 2factors in $K_{2 p+1}$. A 2-factorization of K_{7} is shown in Figure 7.3.3.

Theorem 7.3.5 For every positive integer p, the graph $K_{2 p+1}$ can be 2-factored into p hamiltonian cycles.

Proof. The result is trivial when $p=1$, so we can assume that $p \geq 2$. Let the vertices of $K_{2 p+1}$ be $v_{0}, \ldots, v_{2 p}$. We arrange the vertices $v_{1}, \cdots, v_{2 p}$ cyclically in a regular $2 p$-gon and place v_{0} in the center of the arrangement. We define the edges of the 2-factor F_{i} to consist of the edges $v_{0} v_{i}, v_{0} v_{p+i}$ along with $v_{i} v_{i+1}$ and all edges parallel to this edge, and $v_{i-1} v_{i+1}$ and all edges parallel to this edge. (All subscripts are expressed modulo $2 p$). Then each F_{i} is a hamiltonian cycle, and $K_{2 p+1}$ is the edge sum of these 2 -factors.

Figure 7.3.3. A 2-factorization of K_{7}.

Corollary 7.3.1 For every positive integer p, the graph $K_{2 p}$ can be factored into p
hamiltonian paths.

We conclude this section with another result on complete graphs. Its proof is left to the exercises.

Theorem 7.3.6 For every positive integer p, the graph $K_{2 p}$ is 1-factorable.

Section 7.4 Degrees and 2-Factors

In this section we wish to consider several results that appear similar to some of the theorems we saw earlier dealing with hamiltonian graphs. Since a hamiltonian cycle is a 2-factor, it is not surprising that there is a relationship between these hamiltonian results and theorems dealing with 2-factors. We begin with a very nice result due to El-Zahar [7].

Theorem 7.4.1 Let G be a graph of order n and let $n_{1} \geq 3$ and $n_{2} \geq 3$ be two integers such that $n=n_{1}+n_{2}$. If $\delta(G) \geq\left\lceil\frac{n_{1}}{2}\right\rceil+\left\lceil\frac{n_{2}}{2}\right\rceil$, then G contains two disjoint cycles C_{1} and C_{2} of length n_{1} and n_{2}, respectively.

El-Zahar's Theorem can be viewed as a generalization of Dirac's Theorem on hamiltonian graphs. Dirac's Theorem provides for a 2 -factor that is one cycle while ElZahar's Theorem uses a slightly stronger degree condition to provide for a 2-factor that is two cycles. A stronger look at Dirac's condition allows us to actually say much more. We begin with a lemma.

Lemma 7.4.1 Let G be a graph of order n with minimum degree $\delta(G) \geq n / 2$. If G contains $k \geq 1$ vertex disjoint cycles $C_{1}, C_{2}, \ldots, C_{k}$ such that

$$
\left|V(G)-\cup_{i=1}^{k} V\left(C_{i}\right)\right| \leq 2,
$$

then G has a 2-factor with exactly k vertex disjoint cycles.
Proof. If $V(G)-\underset{i=1}{k} V\left(C_{i}\right)=\{w\}$, then G contains the desired 2-factor since deg $w \geq n / 2$ and hence w is adjacent to two consecutive vertices of a least one of the cycles.

$$
k
$$

Thus we may assume $V(G)-\underset{i=1}{\cup} V\left(C_{i}\right)=\{u, v\}$. If one of u and v, say u, is adjacent to two consecutive vertices of one of the cycles, then, as before, we obtain the
desired 2-factor. Thus we may assume that $\operatorname{deg} u=\operatorname{deg} v=n / 2$ and that each of u and v is adjacent to alternate vertices of each of the cycles and necessarily to each other. Let

$$
C_{1}: u_{1}, u_{2}, \ldots, u_{t}, u_{1}
$$

be one such cycle. If u and v are adjacent to the same set of vertices of C_{1}, say $\left\{u_{1}, u_{3}, \ldots, u_{t-1}\right\}$. Then C_{1} can be replaced by

$$
u_{1}, u, v, u_{3}, u_{4}, \ldots, u_{t}, u_{1}
$$

to obtain k vertex disjoint cycles containing all but one vertex of G. In this case, as we have seen, G has the desired 2 -factor. On the other hand, if u is adjacent to $u_{1}, u_{3}, \ldots, u_{t-1}$ and v is adjacent to $u_{2}, u_{4}, \ldots, u_{t}$. Then we may replace C_{1} with the cycle

$$
u_{1}, u, u_{3}, u_{2}, v, u_{4}, u_{5}, \ldots, u_{t}, u_{1}
$$

to complete the proof.

Now, with the aid of the lemma, we can take the stronger look at Dirac's condition promised earlier. The result is from [5].

Theorem 7.4.2 Let k be a positive integer and let G be a graph of order $n \geq 4 k$ with minimum degree $\delta(G) \geq n / 2$. Then G has a 2 -factor with exactly k vertex disjoint cycles.

Proof. The cases $k=1,2$ follow from Dirac's Theorem and El-Zahar's Theorem, respectively. Thus we may assume that $k>2$. Since $\delta(G) \geq n / 2 \geq 2 k$ and $n \geq 4 k, G$ contains $k \underset{k}{\text { vertex }}$ disjoint cycles $C_{1}, C_{2}, \ldots, C_{k}$ by Theorem 5.8.4. Let $X=V(G)-\underset{i=1}{\cup} V\left(C_{i}\right)$ and assume $X \neq \varnothing$.

If $\delta(\langle X\rangle)<|X| / 2$, let $w \in X$ with $\operatorname{deg}_{\langle X\rangle}(w)<|X| / 2$. Then, since $\delta(G) \geq n / 2$, it follows that w is adjacent to more than half of the vertices of some $C_{i}, 1 \leq i \leq k$ and therefore adjacent to consecutive vertices of C_{i}. Therefore w can be added to C_{i}. Continue this process to obtain k vertex disjoint cycles $C^{\prime}{ }_{1}, C^{\prime}{ }_{2}, \ldots, C^{\prime}{ }_{k}$ such that either

$$
\begin{aligned}
V(G) & =V\left(C^{\prime}{ }_{1}\right) \cup_{k} V\left(C^{\prime}{ }_{2}\right) \cup \cdots \cup V\left(C^{\prime}\right) \quad \text { or } \\
X^{\prime} & =V(G)-\cup_{i=1}^{\cup} V\left(C^{\prime}{ }_{i}\right) \neq \varnothing \quad \text { and } \\
\delta\left(\left\langle X^{\prime}\right\rangle\right) & \geq\left|X^{\prime}\right| / 2 .
\end{aligned}
$$

In the first case we have the desired 2-factor. In the second case, either $\left\langle X^{\prime}\right\rangle=K_{2}$ or $\left\langle X^{\prime}\right\rangle$ is hamiltonian. If $\left\langle X^{\prime}\right\rangle=K_{2}$, then by applying Lemma 7.4.1 we obtain the desired 2-factor. Thus we may assume that $C^{\prime}{ }_{k+1}$ is a hamiltonian cycle of X^{\prime}. Without loss of generality, assume that $\left|V\left(C^{\prime}{ }_{1}\right)\right| \leq\left|V\left(C^{\prime}{ }_{i}\right)\right|$ for $i=2,3, \ldots, k+1$, so that
$\left|V\left(C^{\prime}{ }_{1}\right)\right| \leq \frac{n}{k+1} \leq n / 4$.
Since $\delta(G) \geq n / 2$, the number of edges between $V\left(C^{\prime}{ }_{1}\right)$ and $V(G)-V\left(C^{\prime}{ }_{1}\right)$ is at least

$$
\left|V\left(C_{1}^{\prime}\right)\right|\left(n / 2-\left|V\left(C_{1}^{\prime}\right)\right|+1\right) .
$$

If between every three consecutive vertices of $C^{\prime}{ }_{1}$ and of $C^{\prime}{ }_{i}(2 \leq i \leq k+1)$ there are at most three edges, then the number of edges between $V\left(C^{\prime}{ }_{1}\right)$ and $V(G)-V\left(C^{\prime}{ }_{1}\right)$ is at most

$$
\left(\frac{1}{3}\right)\left(n-\left|V\left(C^{\prime}{ }_{1}\right)\right|\right)\left|V\left(C_{1}^{\prime}\right)\right|
$$

This, however, implies that

$$
\left(\frac{1}{3}\right)\left(n-\left|V\left(C_{1}^{\prime}\right)\right|\right)\left|V\left(C_{1}^{\prime}\right)\right| \geq\left|V\left(C_{1}^{\prime}\right)\right|\left(n / 2-\left|V\left(C_{1}^{\prime}\right)\right|+1\right)
$$

so that

$$
\left|V\left(C_{1}^{\prime}\right)\right| \geq n / 4+3 / 2,
$$

contradicting the fact $\left|V\left(C^{\prime}{ }_{1}\right)\right| \leq n / 4$. Thus, for some i with $2 \leq i \leq k+1$, three consecutive vertices of $C^{\prime}{ }_{1}$ have at least four adjacencies to three consecutive vertices of $C^{\prime}{ }_{i}$. In this case it is straightforward to verify that $C^{\prime}{ }_{1}$ and $C^{\prime}{ }_{i}$ can be combined to form a cycle containing all but at most two of the vertices of $C^{\prime}{ }_{1}$ and $C^{\prime}{ }_{i}$. Then an application of Lemma 7.4.1 completes the proof.

With slightly more effort it is possible to extend our generalizations to an Ore-like result concerning degree sums of nonadjacent vertices. The following is also from [5].

Theorem 7.4.3 Let G be a graph of order $n \geq 4 k$ such that $\operatorname{deg} x+\operatorname{deg} y \geq n$ for each pair of nonadjacent vertices x, y in $V(G)$, then G has a 2-factor with exactly k vertex disjoint cycles.

Exercises

1. Show that the n-cube $Q_{n}(n \geq 2)$ has a perfect matching.
2. Show that Q_{n} is r-factorable if, and only if, $r \mid n$.
3. Characterize when the graph $K_{p_{1}, p_{2}, \ldots, p_{n}}$ has a perfect matching.
4. Determine the number of perfect matchings in the graphs $K_{p, p}$ and $K_{2 p}$.
5. How many perfect matchings can exist in a tree?
6. Find a maximum matching and a minimum cover in the graph below using each of the indicated methods.
a. Algorithm 7.2.1 and Theorem 7.2.1.
b. A network model.

7. Use Dirac's theorem (Corollary 5.2.1) to show that if G has even order p and $\delta(G) \geq \frac{p}{2}+1$, then G has a 3 -factor.
8. Show that every doubly stochastic matrix is a square matrix.
9. Show that if $G=(X \cup Y, E)$ is a bipartite graph, then

$$
\beta_{1}(G)=|X|-\max _{S \subseteq X}\{|S|-|N(S)|\}
$$

10. Use the previous exercise to show that if the (p, q) graph $G=(X \cup Y, E)$ is bipartite and $|X|=|Y|=n$ and $q>(k-1) n$, then G has a matching of cardinality k.
11. [9] Suppose that G is a graph of order p with the property that for every pair of nonadjacent vertices x and $y,|N(x) \cup N(y)| \geq s$.
a. Use Berge's defect form of Tutte's theorem to show that if $s>2\left\lfloor\frac{p}{3}\right\rfloor-2$ and p is odd and $p \geq 6$, then

$$
\beta_{1}(G)=\frac{1}{2}(p-1) .
$$

b. Find a graph of order 5 for which the conditions of part (a) fail to ensure $\beta_{1}(G)=\frac{1}{2}(p-1)$.
c. Use Tutte's theorem to show that if $s>\frac{2}{3}(p-1)-1$ and p is even and G is connected, then $\beta_{1}(G)=\frac{p}{2}$.
12. Use Tutte's theorem to prove Hall's theorem.
13. Use König's theorem to prove Hall's theorem.
14. Prove Corollary 7.3.1.
15. Prove Theorem 7.3.6.
16. Can $K_{2 n}$ can be factored into $n-1$ hamiltonian paths and one 1-factor?
17. Let G be a (p, q) graph of even order p with $\delta(G)<\frac{p}{2}$. Show that if

$$
q>\binom{\delta(G)}{2}+\binom{p-2 \delta(G)-1}{2}+\delta(G)(p-\delta(G))
$$

then G has a perfect matching.
18. Four men and four women apply to a computer dating service. The computer evaluates the unsuitability of each man for each woman as a percentage (see the table below). Find the best possible dates for each woman for this Friday night.

	M_{1}	M_{2}	M_{3}	M_{4}
W_{1}	60	35	30	65
W_{2}	30	10	55	30
W_{3}	40	60	15	35
W_{4}	25	15	40	40

19. Consider the table used for the last exercise as representing the weights assigned to a bipartite graph and solve the bottleneck assignment problem for this graph.
20. The math department at your college has six professors that must be assigned to teach each of five different classes. The department did an examination of the suitability of each professor for each class and the unsuitability table is shown below. What is the optimal teaching assignment that can be made if no professor is assigned more than one class?

	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}
C_{1}	75	25	55	25	50	35
C_{2}	60	30	45	35	45	20
C_{3}	55	25	50	15	50	30
C_{4}	40	35	40	45	35	25
C_{5}	50	20	45	30	40	45

(Hint: Add a dummy class that each professor is equally suited to teach.)
21. Does the previous problem make sense as a bottleneck assignment problem? If so, solve it.
22. Consider the doubly stochastic matrix below. Use Algorithm 7.2.2 to decompose this matrix into permutation matrices.
$\left|\begin{array}{lllll}0.3 & 0.3 & 0.0 & 0.3 & 0.1 \\ 0.1 & 0.5 & 0.2 & 0.1 & 0.1 \\ 0.2 & 0.0 & 0.3 & 0.5 & 0.0 \\ 0.0 & 0.2 & 0.5 & 0.0 & 0.3 \\ 0.4 & 0.0 & 0.0 & 0.1 & 0.5\end{array}\right|$
23. Consider the table of the previous problem as the weights assigned to the edges of a bipartite graph. Interpret your solution in relation to the last problem on this graph.
24. Explain why the adjustment process allows us to complete the hungarian algorithm applied to an unsuitability matrix.
25. A decomposition of G is a collection $\left\{H_{i}\right\}$ of subgraphs of G such that $H_{i}=\left\langle E_{i}\right\rangle$ for some subset E_{i} of $E(G)$ and where the sets $\left\{E_{i}\right\}$ partition $E(G)$. Prove that the complete graph K_{p} can be decomposed as a collection of 3cycles if, and only if, $p \geq 3, p$ is odd and 3 divides $\binom{n}{2}$.
26. Find a decomposition of K_{5} as 5-cycles.
27. Find a decomposition of K_{10} as paths of length 5 .
28. Prove that for each integer $n \geq 1$, the graph $K_{2 n+1}$ can be decomposed as a collection of stars $K_{1, n}$ and that the graph $K_{2 n}$ can be decomposed as a collection of stars $K_{1, n}$.
29. By an ascending subgraph decomposition of a graph G of $\operatorname{size}\binom{n+1}{2}$ we mean an edge decomposition into subgraphs G_{1}, \ldots, G_{n} with the properties that $\left|E\left(G_{i}\right)\right|=i$ and $G_{1} \leq G_{2} \leq \cdots \leq G_{n}$, that is, each G_{i} is isomorphic to a subgraph of G_{i+1}. Show that K_{m} has an ascending subgraph decomposition as stars and also an ascending subgraph decomposition as paths.
30. Find an example that shows that the $n \geq 4 k$ condition in Theorem 7.4.2 cannot be reduced.
31. Find an example to show that the degree condition in El-Zahar's Theorem is sharp.
32. Prove Theorem 7.4.1.

References

1. Anderson, I., Perfect Matchings of a Graph. J. Combinatorial Theory, 10B(1971), 183-186.
2. Berge, C., Two Theorems in Graph Theory. Proc. Nat. Acad. Sci. USA, 43(1957), 842-844.
3. Berge, C., Sur le Couplage Maximum d'un Graphe. C. R. Acad. Sci. Paris, 247(1958), 258-259.
4. Birkhoff, G., Tres Observaciones Sobre el Algebra Lineal. Universidad Nacionale Tucumańn Revista, 5(1946), 147-151.
5. Brandt, S., Chen, G., Faudree, R.J., Gould, R.J., and Lesniak, L., On the Number of Cycles in a 2-Factor, (preprint).
6. Egerváry, J., Matrixok Kombinatorikus Tulajdonságairól. Mathematika eś Fizikai Lápok, 38(1931), 16-28.
7. El-Zahar, M.H., On Circuits in Graphs, Discrete Math. 50(1984d), 227-230.
8. Faudree, R. J., Gould, R. J., Jacobson, M. S., and Schelp R. H., Extremal Problems Involving Neighborhood Unions, J. Graph Theory, (in press).
9. Ford, L. R., Jr. and Fulkerson, D. R., Flows in Networks. Princeton University Press, Princeton, NJ, 1962.
10. Gale, D. and Shapley, L.S., College Admissions and the Stability of Marriage, The American Mathematical Monthly, 69(1962), 9-14.
11. Hall, P., On Representatives of Subsets, J. London Math. Soc., 10(1935), 26-30.
12. König, D., Graphs and Matrices (Hungarian). Mat. Fig. Lapok, 38(1931), 116-119.
13. Petersen, J., Die Theorie der Regulären Graphs. Acta Math., 15(1891), 193-220.
14. Tutte, W. T., The Factorization of Linear Graphs. J. London Math. Soc., 22(1947), 107-111.
15. Von Neumann, J., A Certain Zero-Sum Game Equivalent to the Optimal Assignment Problem. Contributions to the Theory of Games, Kuhn and Tucker, eds., Annals of Mathematics Studies, 28(1953), 206-212.
