Cities, mobility and climate change

David Banister

Transport Studies Unit, School of Geography and the Environment, Oxford University, United Kingdom

A R T I C L E I N F O

Keywords:
Transport
Cities
Climate change
Development

A B S T R A C T

Societies gain enormous benefits from travel, as economies have become more globalised and as the new communications infrastructure allows international networking and travel at a low cost. There has been a true internationalisation of all activities, and travel forms an essential part of that process. However, this mobility is fuelled by carbon, and there is clear scientific agreement that carbon emissions are affecting the global climate with irreversible long term consequences. Transport is the one sector where a reduction in energy use and emissions is proving to be extraordinarily difficult to achieve despite some success in urban areas. This paper focuses on cities, mobility and climate change, highlighting recent trends in both developed and developing countries. It is argued that the current situation is unsustainable, and that transport must contribute fully to achieving carbon reduction targets. An alternative is presented, based on the sustainable mobility paradigm (Banister, 2008) that looks at ways to reduce the need to travel in cities. The belief that high mobility and technology provides the solution is misplaced, as technological innovation can only get us part of the way to sustainable transport, and this may facilitate more travel. There are opportunities for cities to switch to low carbon transport futures, where vision and action are based on a combination of economic, planning and technological innovations working in mutually supporting ways. Potentially, the future is bright for low carbon transport in cities, but the real question is whether there is the commitment and leadership to follow such a path.

1. Introduction

There are enormous benefits from travel, as economies have become more globalised and as the new communications infrastructure allows international networking and travel at a low cost. People’s aspirations and expectations have been increased through media coverage of world events, through more educational and leisure opportunities, and through increasing wealth. There is a true internationalisation of all activities, and travel forms an essential part of that process. To counter that optimism is the evidence that we now live in the carbon society, and that carbon emissions are affecting the global climate with irreversible long term consequences. Transport is the one sector where such a reduction in energy use and emissions is proving to be extraordinarily difficult to achieve.

In urban areas, there are many good examples of reductions in energy use in transport, principally through demand management (pricing, parking and access control, congestion charging), investment in public transport, priority for walking and cycling, and a range of soft measures designed primarily to reduce the use of single occupancy cars. In addition planners have been active in creating high quality local neighbourhoods, including innovative designs for housing and mixed use developments, and the concentration of development around public transport accessible locations. In all cases, the intention is to reduce the need to travel (particularly by car), to encourage greater use of public transport (and walking and cycling), and to reduce travel distances. The key here is to provide quality, with easy access to local services and facilities, so that people do not need to travel long distances. There are positive signs that city living is becoming ‘fashionable’ and that sustainable lifestyles are being adopted by many people (Banister, 2005).

This paper focuses on cities, mobility and climate change, highlighting recent trends in both developed and developing countries. It is argued that the current situation is unsustainable, and that transport must contribute fully to achieving carbon reduction targets. An alternative is presented, based on the sustainable mobility paradigm (Banister, 2008) that looks at ways to reduce the need to travel in cities. The belief that high mobility and technology provides the solution is misplaced, as technological innovation can only get us part of the way to sustainable transport, and this may facilitate more travel. Evidence for making much stronger use of the planning and land development policies in combination are cited for cities in both developed and developing countries, and the argument is made for the use of all available policy levers in mutually supporting ways, including economic, planning and technological opportunities. Potentially, the future is bright for low carbon transport in cities, but the real question is whether there is the commitment and leadership to follow such a path.
2. The reality in the EU

In most EU cities, there are some indications that modest change in behaviour has taken place. The real challenge is not the acceptance of the strong links between mobility and climate change, but the imperative for substantial behavioural change. The scale of the problem has been totally underestimated, and the actions being taken by governments at all levels are not addressing the seriousness of the issues. Even the actions taken by the most environmentally aware individuals are not sufficient, as it has proved very difficult to stabilise the level of carbon emissions from transport, let alone reduce them (Table 1). Since 1990, there has been a steady increase in energy, emissions and travel in the EU27, and the pattern seems to suggest that the increase in energy and emissions is growing at a faster rate over this period than travel.

Even though schemes have been implemented to reduce the use of the car in cities and to make its use more efficient elsewhere, there has still been a substantial growth in travel distance, as cities have spread and as the desire for low density car based lifestyles has become dominant. The technology has not kept pace with the growth in car based travel, and even a substantial shift to more efficient vehicles and alternative fuels will not address the problems fully. Over the next 25 years, it has been estimated that the maximum (possible) contribution of technological innovation to reducing CO₂ emissions in the transport sector in the UK would be about 21 MtC (to 2030) (Banister and Hickman, 2006). This is about half the levels required to achieve a 60% reduction, equivalent to the targets set by the IPCC over the longer period to 20501 (IPCC, 2001, 2007).

Such a change would require the ‘average’ cars to have an emissions profile of 90 gCO₂/km, which is less than the current benchmark level of 104 gCO₂/km (Toyota Prius and Citroen C1), with half the fuel that is still needed by these vehicles being sourced from second generation biofuels. The current average level of emissions of new cars in the UK (2005) is 169 gCO₂/km (SMMT, 2006). Similar changes would be required in all EU countries. Massive investment would be required in changing production processes for the new super efficient cars, in sourcing substantial quantities of alternative fuels, and in giving incentives to industry and individuals to use these new vehicles. Perhaps the only way to achieve such a change would be to switch to electric city vehicles, but even here there would need to be a new support infrastructure, and the power would have to be generated from renewable sources.

Significant reductions of CO₂ emissions in transport in the EU can only be achieved through behavioural change. There is little sign that people are aware of the scale of the challenge, or prepared to make the necessary changes. Globally, carbon emissions per capita are about 4.37 tCO₂ (2006) (1.07 tCO₂), but the EU27 average is about 9.28 tCO₂ (2.53 tCO₂) and the US figure is 19.45 tCO₂ (6.80 tCO₂). The stabilisation targets mean that the average per capita level should be under 2tCO₂ (2050) (0.75 tCO₂), much less than the current EU or US levels. It is also lower than the current level of 4.07tCO₂ for China (0.45 tCO₂) and about double the current level of 1.07 tCO₂ in India (0.10 tCO₂). This means that those countries currently producing more than the average levels of carbon emissions should be making an even greater contribution to the overall reduction target. The EU and the US should be leading the move towards contraction and convergence on this ‘stabilisation’ target (Meyer, 2001). Transport can and should play a major part in achieving the target.

3. The global perspective

In addition to the denial of the scale of change required, there are other difficulties in achieving sustainable transport. The US produces over 21% (2006) of the carbon emissions from energy (including transport), yet it is not part of any international agreement to reduce its emissions (EC DG Energy and Transport, 2008). Over the last ten years it has increased its CO₂ emissions by 14%, with global levels of CO₂ increasing by 24% (1995–2005). Although only 5% of the world’s population live in the US, it has 30% of the cars and produces 45% of global car based CO₂ emissions (DeCicco and Fung, 2006). It is crucially important that the US is fully engaged in the international debates about reducing levels of carbon emissions. The American Recovery and Reinvestment Act (2009) has allocated more than $80 billion to the generation of renewable energy, investment in clean technology, advancing vehicle and fuel technologies, and building a smarter electric grid, and there are new efficiency standards for cars and trucks. It is only very recently that the US motor industry seems to have become more aware of the need to produce a range of fuel efficient vehicles.

The global power structure is also changing, as has been seen at the Copenhagen Climate Change summit (COP15, December 2009), where for the first time China, India, Brazil and South Africa (the BASIC countries) have played a key role in determining the nature of the ‘Accord’ and the scale of the financial support for the poorer nations. But there were no binding commitments made, and transport was not mentioned either at the summit or in the ‘Accord’, even though this sector accounts for more than 23% of energy related global GHG emissions (Ribeiro et al., 2007).

The outlook is brighter at the city level, as many local governments have taken on a leadership role in addressing the transport problems as they relate to carbon emissions, but there is considerable variation between cities. For example, more than half the total energy consumption in Mexico City, Hong Kong and Cape Town is transport based (UN Habitat, 2008), whilst the level in many Euro-

Table 1

<table>
<thead>
<tr>
<th>EU27</th>
<th>Total energy consumption in transport (mtoe)</th>
<th>GHG emissions from transport activities (mtCO₂e)</th>
<th>Travel by car (m pass km)</th>
<th>All passenger travel (m pass km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>93</td>
<td>113</td>
<td>121</td>
<td>1990</td>
</tr>
<tr>
<td>2000</td>
<td>113</td>
<td>121</td>
<td>123</td>
<td>2000</td>
</tr>
<tr>
<td>2005</td>
<td>121</td>
<td>123</td>
<td>123</td>
<td>2005</td>
</tr>
</tbody>
</table>

Notes: 1. Total energy – all modes, including rail, road, air and inland navigation. 2. Aggregate emissions of Kyoto basket of 6 GHG weighted by their global warming potentials. 3. All passenger transport includes car, bus, metro and rail, but not internal air, sea and powered two wheelers.

1 The National Fuel Efficiency Policy (2012–2016) requires an average fuel economy standard of 35.5 mpg in 2016, and will save 1.8 billion barrels of oil over the life of the programme. The fuel economy gain averages more than 5% per year and will result in a reduction of approximately 900 million metric tons in greenhouse gas emissions.

2 The COP15 Accord can be downloaded http://www.denmark.dk/NR/rdonlyres/C41B62AB-4688-44CE-BB7B-F6D2CBAAEC20/0/copenhagen_accord.pdf.
pean cities (for example, London and Paris) is about a quarter. This reflects the different strategies adopted by city planners over the recent past, such as promoting the use of the car through investment in roads and free parking, to demand management and constraints on the use of the car, and investment in local facilities and in public transport.

The politics are much wider than just the transport elements, as there are substantial income differences within and between cities, and not all people have access to transport. The UN Habitat (2008) review of world cities placed Beijing as being the most equal city in Asia (Gini coefficient 0.22), but Hong Kong (also in China) has a much higher level of inequality (Gini coefficient 0.53). Recent analyses suggest that India is undergoing an inequality trend somewhat similar to that of China as a result of liberalisation and globalisation. In 2002, the income gain in the richest 10% of the population was about four times higher than the gain of the poorest 10% (UN Habitat, 2008). Investment in most transport infrastructure and services benefits the rich and not the poor.

4. Mega-cities and sustainable transport

Urban living will be at the centre of most activity, as over 50% of the world’s population are now classified as urban dwellers (2005). There is a clear expectation that this figure will increase to 70% by 2050. These levels of urbanisation are already apparent in Europe, North America and Latin America (UN Habitat, 2008). Globally, the rate of urbanisation is now 3 million per week (UN Habitat, 2008). Mega-cities (population over 10 million) are all characterised by high population growth, both from natural increase and through inward migration, and a huge expansion in the urban area with substantial new requirements for both housing and jobs. The rate of increase in the supply of new infrastructure will never match the growth in demand.

These cities have tremendous potential for growth and will be the powerhouses of the world economy over the next decades, but they are also centres for potential unrest, as there is substantial inequality and poverty (UN Habitat, 2008). The challenges for governments are daunting with little space for expansion in the original cities, so there is extensive urban sprawl with increased distances between where the people live, their jobs and other facilities. The concept of single centred cities is becoming less relevant across high income cities, where the main concerns are over levels of pollution and not all people have access to transport. The UN Habitat (2008) review of world cities placed Beijing as being the most equal city in Asia (Gini coefficient 0.22), but Hong Kong (also in China) has a much higher level of inequality (Gini coefficient 0.53). Recent analyses suggest that India is undergoing an inequality trend somewhat similar to that of China as a result of liberalisation and globalisation. In 2002, the income gain in the richest 10% of the population was about four times higher than the gain of the poorest 10% (UN Habitat, 2008). Investment in most transport infrastructure and services benefits the rich and not the poor.

There are good examples where development has been seen as investment, with the basic infrastructure being provided as part of the urbanisation process, as in Guangzhou City (Pearl River). Conversely, higher densities can be achieved through compactness and integrated approaches that combine investment in high capacity public transport and development, as in Hong Kong or Singapore (around their metro systems) or in Curitiba (around its bus rapid transit system). Strong city level governance is essential, where there is a clear vision about the future of the city, and where there is both the power and resources for action. But above all, there is a need for leadership and for all stakeholders to engage with the process of city-building, so that responsibilities and actions are both supported and implemented effectively. This is the only way to move towards the sustainable city. The alternative is one of weak governance, where there is no direction and the consequences are huge sprawling divided cities – this is the inefficient and unsustainable city.

In Europe, there are no mega-cities, the possible exception being London, where the city region has a population of 15 million (25% of national population) and 40% of the GDP. The key concerns here are quality and sustainability that cover equality of opportunity, and access to services and facilities, as well as high environmental standards. Here, the growth rates are modest and there are strong governance structures that encourage order, priority for people, polycentric urban form (London is a city of villages), and the full integration of land use and transport.

Many of the World’s great cities are located on the coast or along the major rivers, as historically they have been centres of trade. But these locations are now prone to flooding, caused by storm surges and high winds, and accentuated by global warming (+2°C) and sea level rise. About 40% of the World’s cities (1–10 million) and 15 of the 20 mega-cities lie on the coast. Their vulnerability to flooding has been substantially increased, and some have taken action to reduce the potential impacts, but 40 million or 10% of the total population are exposed to a 1 in 100 year coastal flood event, and this will rise to 150 million in 2070 (Table 2 and Nicholls et al., 2008). It is proposed that apart from upgrading protection and infrastructure to handle such events, land use planning should be used to reduce vulnerability for new developments and selective relocation of existing city areas should be considered. For example, London’s flood barrier was built (1974–1983) at a cost of £1300 million in 2001 prices: £2000 million to prevent flooding from high tides and sea surges for the ‘100 year event’. Between 1986 and 1996, the barrier was raised 27 times, but in the period 1996–2006 it was raised 66 times. The expected property damage is estimated at £30 billion ($50 billion in 2001 prices) should the barrier be breached, and these financial costs do not include loss of life, health and income effects.

5 The Gini coefficient is the most widely used measure to determine the extent to which the distribution of income or consumption among individuals or households deviates from a perfectly equal distribution. A Gini coefficient of 0 indicates perfect equality and a Gini coefficient of 1 indicates perfect inequality. http://www.scribd.com/doc/328232/United-Nations-Gini-Coefficient.

5 CO2 concentrations are currently about 385 ppmv and with other greenhouse gases being included, this value increases to 430 ppmv CO2e (2009). A level of 450 ppmv CO2e means that there is a 26% chance of exceeding 2°C. A level of 550 ppmv CO2e means that there is a 63–99% chance of exceeding 2°C. If global concentrations of greenhouse gases stabilise at 560 ppmv CO2e, it is ‘likely’ that global mean surface temperatures will rise by 3°C above pre-industrial levels (Meinhausen, 2008).

5. The sustainable mobility paradigm

Sustainable mobility provides a new paradigm within which to investigate the complexity of cities, and to strengthen the links between land use and transport. The city will provide the location where most (70–80%) of the world’s population will live (2050). Empirical research in developed cities has concluded that the key parameters of a sustainable city are that they should be over 50,000 population, with medium densities (over 40 persons per
The need to travel (less trips), to encourage modal shift, to reduce social dimensions (people and proximity), as illustrated in Table 3. Sustainable city must balance the requirements along the physical and the desirability (what we would like to see), and the role that would be designed at the personal scale to allow both high quality transport priority, so that the need to use the car would be minimized. The intention is not to prohibit the use of the car as this would be both difficult to achieve and it would be seen as being against the notions of freedom and choice. The intention is to design cities of such quality and at a suitable scale that people would not need to have a car.

This alternative approach requires clear and innovative thinking about city futures in terms of the reality (what is already there) and the desirability (what would like to see), and the role that transport can (and should) play in achieving these objectives. The sustainable city must balance the requirements along the physical dimensions (urban form and traffic) against those concerning the social dimensions (people and proximity), as illustrated in Table 3. The sustainable mobility approach requires actions to reduce the need to travel (less trips), to encourage modal shift, to reduce trip lengths and to encourage greater efficiency in the transport system. A sustainable transport system means that we will travel less.

5.1. Reducing the need to travel – substitution

In its pure form this means that a trip is no longer made, as it has either been replaced by a non-travel activity or it has been substituted through technology, for example Internet shopping. The impact of information and communications technologies (ICT) on transport is complex, and on balance it seems that there is complementarity between these two factors (Banister and Stead, 2004). Although there is a large substitution potential, the relationships between transport and ICT seem to be symbiotic with a greater opportunity for flexibility in travel patterns, as some activities are substituted, whilst others are generated, and some replaced by fewer longer distance journeys (Lyons and Kenyon, 2003). There is also the possibility of carrying out a ‘trip tour’, where several activities are engaged in so that one longer journey replaces three or four shorter single activity trips. There is a net reduction in travel distance. Technology and networking in its widest form facilitates many different combinations of activities.

5.2. Transport policy measures – modal shift

Transport policy measures can reduce levels of car use through the promotion of walk and cycle and the development of the new transport hierarchy (Table 3). This can be achieved through slowing down urban traffic and reallocating space to public transport, through parking controls and road pricing, and through making it easier to use public transport. Demand management is effective in restricting access and reallocating space, and making better use of the available capacity. A much wider notion of the street is being created, as it is no longer only being considered as a road but also as a space for people, green modes and public transport. Creative use of that space at different times of the day or day of the week means also that new uses can be encouraged (e.g. street markets or play zones). Measures to encourage modal shift must be combined with strategies to make the best use of the ‘released space’, so that there is a net reduction in traffic (Banister and Marshall, 2000). This does not mean that more road capacity needs to be built, but that greater flexibility in its use is required and a greater proportion allocated to walk, cycle and public transport.

5.3. Land use planning measures – distance reduction

These measures address the physical separation of activities and the means by which distance can be reduced. The intention is to build sustainable mobility into the patterns of urban form and layouts, which in turn may lead to a switch to green modes and public transport. It is one area of public policy where intervention can take place, through increasing densities and concentration, through mixed use development, through housing location, through the design of buildings, space and route layouts, through public transport oriented development and transport development areas, through car-free development, and through establishing size thresholds for the availability of services and facilities (Section 6). The timescale over which sustainable mobility might be realised is similar to the turnover of the building stock (about 2% per annum), but decisions on the location of new housing and retrofitting of existing buildings in new uses could have a dramatic effect on travel patterns, and these effects will impact over the lifetime of that housing.
of radical change, and it needs to involve community and stake-
holder commitment to the process of discussion, decision making
and implementation.

6. Planning for city futures

Trying to unravel the complexities of the interrelationships be-
tween travel, urban form and sustainable development is difficult.
Underlying the discussion is the requirement to have some vision of
the city in its desired form – it should be viable (economic jus-
tification), have vitality (inclusive and fair), and it should be
healthy (high quality of life and environmental quality). Transport
provides an essential element in city viability, vitality and health.
The EU vision is based on maintaining the quality of urban life, ur-
ban planning and sustainable development, where mixed uses,
high densities and good environmental conditions are seen as
being central to both improving economic performance and the
vitality of cities.

This vision has resulted from the assessment of the substantial
research that has tried to establish the links between travel, land
use and urban form. This research ranges from simple analyses of
trip generation and attraction characteristics of particular land
uses (e.g. residential and shopping) to more detailed analyses of travel
(and energy use) in locations with distinctly different char-
acteristics. The verdict on this empirical work is mixed. For example,
Anderson et al. (1996) concluded that the current level of
understanding of the influence of urban form on the generation
of emissions and the use of energy is weak. But others (e.g. Stead,
2001; Hickman, 2007) have found far more significant relations-
ships between land use and transport. In both these cases, the socio
economic variables explain substantially more of the variation in
trip making activities than the land use factors. Underlying all
the debates, three main elements need to be examined, namely
the density of development, proximity and quality of development,
and local neighbourhood and design factors (for a more detailed
exposition see Banister and Anable, 2009).

Land use effects on travel behaviour tend to be cumulative and
mutually reinforcing (Hickman, 2007; Litman, 2007). This effect
can be illustrated in two ways. Ewing and Cervero (2002) calcu-
lated the elasticity of vehicle trips and travel per capita with re-
spect to four land use variables (Table 4). Their estimates suggest
that a doubling on local density reduces car trips by 5% per capita
and travel by about the same amount. Although the elasticities are
low, Ewing and Cervero (2002) concluded that they were cumula-
tive, giving a total potential of 13% and 33% decreases in trips and
trip distance (VMT) respectively.

The second study was by Lawton (2001) using data from Port-
land Oregon to examine the impact of land use density, mix, and
road network connectivity on personal travel. As these three

5.4. Technological innovation – efficiency increase

The role of technology is still important, as it impacts on the
efficiency of transport directly through ensuring that the best
available technology is being used in terms of engine design, alter-
native fuels, and the use of renewable energy sources. The city car
technology is likely to be based on a small highly efficiency ICE
(Internal Combustion Engine) or an EV (Electric Vehicle or Plug-
-in Hybrid Vehicle). There are also considerable opportunities for
new forms of public transport, for example in suburban areas
where Demand Responsive Transport and even Personal Rapid
Transit might play a key role. Technology could be used to provide
a delivery service to local neighbourhoods or help organise car
sharing schemes and car clubs. Holistic thinking on a low carbon
city transport system is still embryonic.

Standards can also be introduced to reduce levels of noise and
emissions at source, and measures can be taken to ensure that ac-
tess to certain parts of the city are restricted to those vehicles that
are environmentally cleaner than other vehicles. This is a combina-
tion of technological efficiency and behavioural change (e.g. access
restrictions, ecological driving and adherence to speed limits). It
would also include increasing load factors in both the passenger
and freight sectors, where again there are substantial opportunities
to use the new technologies creatively to match up journeys or
loads to increase occupancy levels and to reduce the overall num-
bers of vehicles using the transport system.

The key to such a shift in thinking is the creation of spaces and
localities in the city that are attractive and affordable, as neigh-
bourhood quality is central to sustainable mobility. Transport plan-
ning must involve all stakeholders in the broadest sense, so that
there is an understanding and acceptance of the rationale behind
the policy changes, and an increased likelihood that behavioural
change follows. Such involvement would help match expectations
of behavioural change with actual outcomes, and this in turn may
lead to permanent change with limited possibilities for rebound ef-
ffects. Public acceptability is central to successful implementation

Table 4

<table>
<thead>
<tr>
<th>Factor</th>
<th>Description</th>
<th>Trips</th>
<th>Travel (VMT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local density</td>
<td>Residents and employees divided by land area</td>
<td>−0.05</td>
<td>−0.05</td>
</tr>
<tr>
<td>Local diversity</td>
<td>Jobs/residential population</td>
<td>−0.03</td>
<td>−0.05</td>
</tr>
<tr>
<td>Local design</td>
<td>Sidewalk completeness/route directness</td>
<td>−0.05</td>
<td>−0.03</td>
</tr>
<tr>
<td>Regional</td>
<td>Street network density accessibility</td>
<td>−0.20</td>
<td></td>
</tr>
<tr>
<td>Distance to activity</td>
<td>centres in the region</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
urbanisation factors increase, per capita vehicle travel declines significantly from about 20 average daily travel miles per adult (32 kms) to just over 6 miles (10 kms).

From the extensive empirical work that has been carried out with respect to the impacts of the land use factors on travel distance, six main factors emerge (Banister and Hickman, 2006), and they are consistent with the sustainable mobility paradigm (Section 5). At the regional level, the location of new development, particularly housing, should be of a substantial size and located near to or within existing settlements so that the total population is at least 25,000 and probably nearer to 50,000. The provision of local facilities and services should be phased so as to encourage the development of local travel patterns. Secondly, density is important and average journey lengths by car are relatively constant (around 12 km) at densities of 15 persons per hectare, but at lower densities car journey lengths increase by up to 35%. Similarly, as density increases, the number of trips by car decreases from 72% of all journeys to 51%. Car use in the high density locations is half that in the lowest density locations. Thirdly, mixed use developments should reduce trip lengths and car dependence. Although research here is limited and concentrates on the work journey, there is considerable potential for enhancing the proximity of housing to all types of facilities and services. Fourthly, as settlement size increases, the trips become shorter and the proportion of trips by public transport increases. Diseconomies of size appear for the largest conurbations as trip lengths increase to accommodate the complex structures of these cities. Fifthly, development should be located near to public transport interchanges and corridors so that high levels of accessibility for all can be provided. But this may also encourage long distance public transport commuting. Free flowing strategic highway network are likely to encourage the dispersal and sprawl of development and stretch commuting. Finally, the availability of parking is a key determinant of whether a car is used or not and appropriate standards need to be linked to accessibility levels.

These conclusions have been confirmed in a report for the UK Commission for Integrated Transport (CIT, 2009), where the six issues, as outlined above, have been extended to 11 factors that seem to be central when thinking about the role of spatial planning in contributing to sustainable development (Table 5). The UKERC (2009) has also produced a large review study of the options available for reducing carbon emissions from surface passenger transport, where each possibility is analysed according to their potential emissions saving, problems with implementation and their costs. The review concentrated on travel choices and vehicle choices, and their main conclusion was that behaviour could be influenced by a range of complementary policies and that carbon reductions can be achieved at a relatively low cost. Little was said in this study on the role that land use and spatial planning policies might play.

Litman (2007) has argued that in the US a 10–20% cumulative total saving in VMT is possible through density and mixed design, and a further 20–40% is possible from regional decisions on the location of new development (Table 6). The figures in the UK are likely to be less, as the trip distances travelled are lower and there is already a much greater use of land use and development controls than in the US.

In the US there is a clear recognition that the car has provided the means for cities to spread, leading to extensive suburbanisation, longer travel distances and low densities (TRB, 2009). It is only recently that the costs of a car intensive lifestyle have become apparent, and it is now clear that compact, mixed use development has a beneficial effect on vehicle miles travelled (VMT) when it is combined with other policy measures, such as demand management (Table 7).

In the developed cities there is a key difference between the European and US traditions. In the European cities there is a history of strategic planning and the control of the land development process from the national to the local level, with clear priorities, responsibilities and controls. This strong planning environment has allowed cities to retain much of their historic structures and suburbanisation has also been controlled, and this has in turn meant that public transport has had a stronger role to play. In the US, much of the local zoning regulations restrict density levels and the mixing of land uses, and this presents a significant barrier to compact development (TRB, 2009). The potential for higher density developments in the US is highest in new and replacement developments in the inner suburbs, and at locations near to good quality highway and public transport interchanges. The local concerns over congestion, local taxes and property values take precedence over the wider issues relating to housing affordability and climate change.

Cities in developing countries are following the same path, with the affluent middle classes buying cars as soon as they can afford to, and the resulting consequences for congestion, safety and the quality of the environment that are imposed on all other people in the city. The more efficient public transport, motorbikes and bicycles are squeezed out to make way for the car, which then dominates much of the available urban space. An opportunity has been missed, as it suggests that the car dominated US city is the only future. The EU cities offer a different perspective, as much of the existing urban structure has been maintained and there has been considerable investment in public transport. However, there is still the problem of urban sprawl, where both the land use and travel patterns are based on car dependent lifestyles and much lower density levels (Banister, 2006).

Cities that currently have low levels of motorisation are changing out of all recognition. About half of the world’s population now live in urban areas, and this is increasing as migration takes place and as more city jobs are created. The Asian Development Bank estimates that the population of Asian cities is increasing by 40 million annually (ADB, 2009). Urban densities will fall as a result of increasing wealth, declining household size, low density residential growth and central area redevelopment. Many of these cities were not built for the levels of traffic they are now experiencing. The inherent flexibility in the use of street space for markets, small industrial activities and social spaces is being replaced by traffic, so that the car can dominate. The car based mobility requires mass redevelopment of the existing city centre or its expansion to new areas so that the necessary capacity can be created. Such ‘solutions’ are costly and have substantial implications for social welfare, environmental quality and health. The new mega cities of the world are emerging, not as the models of sustainable development, but as replicas of the car dependent cities of the West.

The ADB (2009) report has tried to address these issues through the promotion of a sustainable urban transport paradigm that examines management, finance and policy through a wide ranging review. Their proposal is for a much more transparent process that is built on accessibility, with demand management being seen as a central issue together with strong land use policy. The strategy is
and more accessible activities, to shift travel to public transport based on looking at ways to avoid travel through shorter journeys and more accessible activities, to shift travel to public transport rather than the car, and to improve the efficiency of all forms of transport. The avoid-shift-improve nexus is similar to the sustainable mobility paradigm (Section 5).

There are two other key elements in the ADB (2009) proposals. There should also be a clear future city vision or spatial strategy that is affordable, adaptable and implementable, and this requires strong institutions and governance structures for the city. Second, policy effectiveness needs to be clearly explained and accepted by the full range of stakeholders, through their involvement in the process. This is a challenging agenda but one that must be addressed if cities are to become the real centres for sustainable development, as argued here.

The ownership of land in the city is the key factor in much of the discussion in this important paper (ADB, 2009). The case is made that for real change to take place, there needs to be direct intervention by city governments. It is only through stable public institutions that the location, scale and type of land development can be properly regulated and operated. Transport can be seen as part of that development where some of the benefits can be released through value capture. At present much of the land used by low income groups is negotiated through the informal and small land owners, hence the need for intervention and partnership. It is only when the twin issues of poverty alleviation and sustainable transport are seen to be complementary and moving in the same direction that progress will be made.

7. Conclusions and implications for cities

The scale of the challenge is enormous, but it must be tackled in all cities, particularly those that are vulnerable to growth and flooding (Table 2). But the pathways followed by those cities in developed and developing countries may be rather different, as each city has its own unique problems to overcome. The debate on what to do also seems to have been set in a rather narrow economic framework that limits the possible role that planning and the land development process can play. For example, the McKinsey report (December, 2007) set a carbon abatement cost at $50 per tonne CO$_2$e, and concluded that the US can reduce their emissions by between 3.0 and 4.5 Gt CO$_2$e by 2030 (31–49% reduction). About a third of this figure would come from action on the built environment (buildings) and transport, but it was assumed (p42) that there was no change in consumer utility. Urban design and denser, more transport efficient, communities were not assessed. It was also expected that there would be significant increases in distances travelled in the US over the period 2005–2030. The evidence cited here suggest that behavioural change and land use and development decisions can all have a substantial influence on travel and energy use, and must contribute to substantial reductions in CO$_2$ emissions.

Although the empirical evidence may be limited, there is considerable potential for reducing the energy (carbon) use in transport in cities, through creative planning of new developments and the regeneration of existing areas. Sustainable development can be achieved through higher densities, high quality local environments, with close proximity to work and a range of services and facilities, in neighbourhoods that provide safety and security, so that the city can operate 24/7. Transport is designed out of much of the city, and where it is needed, priority is given to high quality public transport and cycling and walk. The role of the car in the city may be limited to ultra clean electric or plug-in hybrid vehicles powered by renewable energy.

Apart from the lack of a clear vision and the seductiveness of following the high mobility option, there are two other key observations. One is that this option is extremely inequitable, as it favours the rich that can afford the new mobility, and it creates

<table>
<thead>
<tr>
<th>Factor</th>
<th>Definition</th>
<th>Travel impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Regional accessibility</td>
<td>Location of development relative to regional urban centres</td>
<td>Improved accessibility reduces per capita vehicle mileage. Residents of more central neighbourhoods typically drive 10–30% fewer miles than urban fringe residents</td>
</tr>
<tr>
<td>2. Density</td>
<td>People or jobs per unit of land area</td>
<td>Increased density tends to reduce per capita vehicle travel. Each 10% increase in urban densities typically reduces per capita VMT by 1–3%</td>
</tr>
<tr>
<td>3. Mix</td>
<td>Degree that related land uses are located close together</td>
<td>Increased land use mix tends to reduce per capita vehicle travel and increase the use of alternative modes, particularly walking. Neighbourhoods with good land use mix typically have 5–15% lower vehicle miles</td>
</tr>
<tr>
<td>4. Public transport accessibility, walking and cycling conditions</td>
<td>Quality of public transport and degree to which destinations are accessible; quantity, quality and security of walking and cycling</td>
<td>Residents with good access to public transport tend to own 10–30% less cars, drive 10–30% fewer miles, and use alternative modes 2–10 times more frequently than residents in car oriented developments. Residents in more walkable communities walk 2–4 times as much and drive 5–15% less than if they lived in more car oriented developments</td>
</tr>
<tr>
<td>5. Centredness, network connectivity, design and management of routes</td>
<td>Location of employment in major activity centres, connectivity of the network (including density), design and layout of streets</td>
<td>Typically 30–60% of commuters to major commercial centres use alternative modes, compared with 5–15% of commuters at dispersed locations. Better road connectivity can reduce vehicle mileage and better cycling and walking provision also helps these modes. More multi modal streets improves use of alternative modes, with traffic calming reducing car use and increasing walking and cycling</td>
</tr>
<tr>
<td>6. Parking supply and management and site design</td>
<td>Number of spaces per unit area, costs, time limits and management, and layout considerations</td>
<td>Parking management strategies can significantly reduce car ownership and mileage. Cost recovery pricing reduces car trips by 10–30%. Mobility management can also reduce car trips by 10–30%</td>
</tr>
</tbody>
</table>

Based on Litman (2007), Table 21.
even greater problems for the mobility of other people. This is the classic situation where individual welfare is a much stronger force than societal welfare. The second is that to create change, there needs to be an alternative that is strongly supported by both the politicians and the public. Leadership and strong governance structures are essential, so that longer term priorities are matched up with short term gains, and that investment and positive actions can be taken consistently over time. Unfortunately, these key elements are often lacking in many cities.

This is the basic dilemma facing cities in terms of mobility and climate change. We all like travelling and we are doing much more of it. Yet we are also aware of the environmental costs of travelling and our responsibilities both locally and globally. Our social networks are increasingly international and the global economy is also dependent on long supply chains. To some extent individual behaviour can be modified and we can substitute travel with technological communication. But in many cases there is no substitute for face to face communication, and we want to see the world and to meet people. It presents a classic case of the conflict between individual preferences and choices, as opposed to the wider needs of society to protect the environment and future generations.

At present the scale and nature of the changes necessary in the transport sector to address climate change have not been seriously debated. Pricing for the external costs of transport would help, as would regulations on emissions and heavy investment in clean technology. But even here, the price rises necessary to create real change are not politically acceptable, as both industry and the electorate are powerful pro car lobbies. The real challenge confronting society is greater than this, namely the expected growth in travel for face to face communication, and we want to see the world and to meet people. It presents a classic case of the conflict between individual preferences and choices, as opposed to the wider needs of society to protect the environment and future generations.

Based on TRB (2009).

Acknowledgments

Earlier versions of this paper have been presented at the Indian Institute of Technology, Delhi 2nd Annual TRIPP Lecture (March 2009), and at the Royal Geographical Society with the Institute of British Geographers’ Annual Conference in Manchester theme session on Transport and Climate Change (September 2009). Thanks also to two helpful referees.

References

