Directions: Find the general solution of each of the differential equations in Exercises 1 - 22. In each case assume $x>0$.
19. $x^{2} y^{\prime \prime}+x y^{\prime}+y=4 \sin \ln x$

Of course to clarify matters, this is really

$$
x^{2} y^{\prime \prime}+x y^{\prime}+y=4 \sin (\ln (x))
$$

Why is this silly Euler-Cauchy equation of interest?? The answer in the back of the text,

$$
y=c_{1} \sin (\ln (x))+c_{2} \cos (\ln (x))+\sin (\ln (x)) \int \frac{\cos (\ln (x))}{1+x} d x-\cos (\ln (x)) \int \frac{\sin (\ln (x))}{1+x} d x
$$

is actually quite wide of the mark. Want to play a little Jeopardy?? When you get bored, determine the second order Euler-Cauchy equation for which this is the general solution. Note: If you understand solution structure, you can simplify your task considerably.

In the meantime, let's obtain the solution to Problem 19.
First we reduce the Euler-Cauchy varmint to a constant coefficient animal. Let $x=e^{t}$ so that $t=\ln (x)$ for $x>0$, and so as not to overload the symbol y, set $w(t)=y\left(e^{t}\right)$. Thus, $y(x)=w(l n(x))$ for $x>0$. After making the substitution and clearing the algebraic dust, we end up with

$$
\begin{equation*}
w^{\prime \prime}(t)+w(t)=4 \sin (t) \tag{*}
\end{equation*}
$$

The solution of this ODE is a routine application of linear techniques, augmented with undetermined coefficient methods.

As usual, we begin by considering the corresponding homogeneous equation:

$$
w^{\prime \prime}(t)+w(t)=0 .
$$

Since this is a constant coefficient equation, obtaining a fundamental set of solutions to this reduces to obtaining the roots of the auxiliary equation:

$$
m^{2}+1=0 .
$$

Obviously, we see that the auxiliary polynomial factors as follows:

$$
m^{2}+1=(m+i)(m-i), \text { where } i^{2}=-1 .
$$

This means that a fundamental set of solutions to the corresponding homogeneous equations is given by

```
{ cos(t) , sin(t) } ,
```

and that the complementary solution is

$$
w_{C}(t)=c_{1} \cos (t)+c_{2} \sin (t) .
$$

From the UC theory, since 4 sin (t) is part of the complementary solution, we should expect a particular integral to be of the form

$$
w_{\mathrm{P}}(t)=A t \cos (t)+B t \sin (t),
$$

where A and B are constants that we will determine by substitution into the (*).

Now, since

$$
w_{P}^{\prime}(t)=A[\cos (t)-t \sin (t)]+B[\sin (t)+t \cos (t)]
$$

and

$$
w_{P}^{\prime \prime}(t)=A[(-2 \sin (t))-t \cos (t)]+B[2 \cos (t)-t \sin (t)],
$$

by substituting w_{P} into (*) and simplifying algebraically, we obtain

$$
-2 A \sin (t)+2 B \cos (t)=4 \sin (t), \text { for each } t \in \mathbb{R} .
$$

From the linear independence of sine and cosine, it follows that $A=-2$ and $B=0$. Thus,

$$
w_{P}(t)=-2 t \cos (t) .
$$

With w_{p} in hand, we may write the general solution to the transformed equation (*) :

$$
w(t)=w_{C}(t)+w_{P}(T)=c_{1} \cos (t)+c_{2} \sin (t)-2 t \cos (t)
$$

All we need do now is transform back to $x^{\prime} s$ and y^{\prime} s.
With all parts of the puzzle in hand, we may write the general solution to \#19:

```
    y(x) = w(ln(x)) = C cos(ln(x)) + C c sin(ln(x)) - 2 ln(x)cos(ln(x))
```

for $x>0$.

Obviously this is not the only route to this solution. Variation of parameters may also be utilized.

Jeopardy Answer:

$$
x^{2} y^{\prime \prime}+x y^{\prime}+y=\frac{x}{x+1}
$$

