Fl oyd’s DE Notes: Some More Linear Second Order Stuff
The Honobgeneous Constant Coefficient Case

Recall that the key to solving the |inear second order
equation

y" +a(x)y' + a)x)-y = F(x),

is to obtain a fundamental set of solutions to the correspondi ng
honbgeneous |inear equation

y" + a(x) -y’ + ax)-y =0.

We shall now deal with a case where the honbgeneous equation
is very easy to solve, the case where all the coefficient functions
are constant functions. In this case, we may suppose that the
honmogeneous equation | ooks |ike this:

(*) a.y" + by' + Cy - O’

where a,b, and c are real nunbers with a # O. | nspired by the
first order version of the problem

a,y' +b.y:0’

whi ch you can easily solve using the material on |inear equations
from Chapter 2, and which has a general solution consisting of

y - C e—(b/a)»x’

you m ght reasonably guess that (*) has at | east one sol uti on which
| ooks li ke

y = emx,

It turns out that if we substitute this guess into equation
(*) above, we obtain

ant-e™ + bme™* + c-e™* = 0,

or
(ant + bm+ c) -e™ = 0.

This last equation inplies that if our guess is a solution to (*),
then mnust be a solution to the quadratic equation

(**) (anf + bm+ ¢c) = 0,

an equation that is called the auxiliary or characteristic equation
of the o.d.e. (*).

Since the earlier theory indicates that any fundanental set of
solutions to (*) should have two nenbers, the solutions to (**) may
very well provide us with the key to a general solution to (*).



Consequently, it is well worth our while to | ook at the sol utions
to (**) in a systematic way.

Recal |l from your earlier algebra courses that the nature of
the solutions to the quadratic equation (**) depends on the sign of
t he di scrim nant,

D=0Db?- 4-ac.

You have two distinct real roots if Dis positive, one real root of
multiplicity 2 when D is zero, and two conplex roots that are
conjugates of each other if Dis negative. Now it turns out that
each of these possibilities leads to a distinctly different
situation in obtaining a fundanental set of solutions to (*).
Consequently, we shall deal with each case in turn.

Case 1: b? - 4-a-c >0

If b> - 4-a-c > 0, then the auxiliary equation (**) has
two distinct real roots, say r and s. It turns out that it is very
easy to see that the two functions y, = e * and y, = e%* are
linearly independent solutions to (*). [That they are solutions is
a consequence of r and s being roots of the auxiliary equation
Since the Wonskian of the two functions is Wy,,y,) = (s - r)el(r+s)x
and s - r =0, it follows that y, and y, are linearly independent.
VWhat we may now conclude is this: { e"* e** } is a fundanenta
set of solutions to (*) in this case, and the general solution is
given by y(x) = c,-e"* + c,- e’

Case 2: b? - 4-ac =0

If b2 - 4-a-c =0, then the auxiliary equation (**) has

one real root, r = -(b/2a), of multiplicity 2. This neans, of
course, that the left side of the auxiliary equation actually
factors so that (**) is equivalent to a(m -(-b/2a))? = O.
Unfortunately, now the auxiliary equation only gives us one
solution, nanely, y, = e~ W need two linearly independent
solutions to build a fundanental set of solutions. To get a
second, linearly independent solution we nust use the magic

encapsul ated in the technique of
Reduction of Order:
A Useful Technique to get "M ssing Solutions.

If f(x) is anon-trivial solution to the honbgeneous equati on
(*) above, the substitution y(x) = v(x) f(x) allows us to reduce
(*) to a first order equation in v'. Set w=v' to get a first
order |inear honogeneous equation. [Here, 'non-trivial’ means ' not
the zero function’.]

You'll recall that Georges’s Notes gave you no exanples
illustrating this. Now we shall see reduction of order in use,
per haps sonmewhat abstractly, but still, in use.

Here we go. Set y = v-e"*. Then, substitutingy into (*), we



obtain by doing the required differentiations that
O=ay”" +by" +cy
is equivalent to
0 =a (v" +2rv' +r?&v)-e"*+ b (v +vr)-e*+cv-er
= (ar? + br + c)-v-e"* + (av" + (2ar + b)v') e X,
In the |ast equation above, since r is a root of (**), we have
ar? + br + ¢ = 0, and because we actually have r = -(b/2a), the
coefficient on v' in the second term above is also zero.
Consequently, the ness above reduces down to this:
O = aV"'er'xi
or
O = VH’
since a # 0.

This | ast second order differential in v can be transforned

into afirst order |inear honogeneous equati on by neans of a sinple
substitution. Let w = v’ . Then by substituting w into the
differential equation O = v”", we obtain w' = 0.
[ The reduction to first order |inear honbgeneous is typical. The
utter, stark sinplicity of w = 0 is not wusual, however.
Incidentally, here is a silly question: Wiat is the integrating
factor for w = 0 ??7]

W may solve w' = 0 by sinply integrating to get w = ¢, a
constant. Consequently, v' = c. Integrating one nore tine yields
v = cx + d, where d is a new constant. This nmeans, finally, that
we have

y = (cx + d)-e",
or

c-x-e* + d-e"X

<
I

a linear conbination of the two functions e * and x-e"*. (Qbserve
that the first function is our original solution and the second is
new. By conputing the wonskian of these two functions, you can
see that they are linearly i ndependent. Consequently, in this case
a fundanental set of solutions for (*) is { e *,x-e"* } and the
general solution is given by y(x) = c,-x-e"™* + c,-e" X

Case 3: b? - 4-ac <0

If b> - 4-a-c < 0, then the auxiliary equation (**) has two



conplex roots that are conjugates since a, b, and c are real
nunbers. Wthout any |oss of generality, we may assune the two
roots arer + s-i and r - s-i, where r and s are a pair of rea
nunbers. As in Case 1, you get two |inearly i ndependent sol utions,
el *sx and el - sHx Unfortunately, these are not usable by us
because these are, in fact, conpl ex-val ued functions. It turns out
that Euler’s identity, e * = cos(x) + i-sin(x), bails us out.
[ Note: "Euler” is pronounced "QOler"!!] This identity connects the
conpl ex exponential function with our old friends sine and cosi ne.
As a result, we can also solve the |inear system

e''* = cos(x) + i-sin(x)

e''* = cos(x) - i-sin(x),

created using the oddness of sine and the evenness of cosine,
to obtain sin(x) and cos(x). Wen we do, we get

cos(x) = (1/2) - (e * + e’

and

si n(x) (1/2i)-(e>* - e'X),

Si nce sine and cosine are conplex |inear conbinations of e * and

e''* above, it turns out that we can uncover two real-valued
functions y, = e"*-cos(s-x) and y, = e"*sin(s-x) that are solutions
to (*) in this case, and they are actually linearly independent.
Consequently, in this case a fundanental set of real-valued
solutions to (*) is { e"*-cos(s-x), e *sin(s x) }, and the general
solution is y(x) = c,-e"*cos(s x) + c,e"*sin(s x).

[ Exercise: Do the plug and chug to verify that y, and y, above are
[inearly independent by conputing their w onskian, and substitute
each separately into (*) to verify each is a solution. In doing
the |l ast part, you will have to use the hypothesis that r + s-i and
r - s-i areroots to (**).]

At this point we have finished our guided tour to the
solutions to the second order |I|inear honobgeneous constant
coefficient equation. Here are a couple of things you nust keep in
m nd.

(1): To actually solve a second order constant coefficient
equation (*), you must obtain the roots to the auxiliary equation
(**) by factoring or using your old friend, the quadratic fornul a.

(2): To understand the solutions of the general n'" order
constant coefficient equation, it really helps to read the text
carefully. The alternative is to re-invent that wheel yourself by
guessing the pattern and doing the required induction argunment.
That, of course, is a fun thing to do, but given your tine
constraints, it mght be wiser to crack the book.



