
Floyd’s DE Notes: Some More Linear Second Order Stuff

The Homogeneous Constant Coefficient Case

Recall that the key to solving the linear second order
equation

y″ + a1(x) y ′ + a2(x) y = F(x),

is to obtain a fundamental set of solutions to the corresponding
homogeneous linear equation

y″ + a1(x) y ′ + a2(x) y = 0.

We shall now deal with a case where the homogeneous equation
is very easy to solve, the case where all the coefficient functions
are constant functions. In this case, we may suppose that the
homogeneous equation looks like this:

(*) a y″ + b y ′ + c y = 0,

where a,b, and c are real numbers with a ≠ 0. Inspired by the
first order version of the problem,

a y ′ + b y = 0,

which you can easily solve using the material on linear equations
from Chapter 2, and which has a general solution consisting of

y = C e-(b/a) x,

you might reasonably guess that (*) has at least one solution which
looks like

y = em x.

It turns out that if we substitute this guess into equation
(*) above, we obtain

am2 em x + bm em x + c em x = 0,

or
(am2 + bm + c) em x = 0.

This last equation implies that if our guess is a solution to (*),
then m must be a solution to the quadratic equation

(**) (am2 + bm + c) = 0,

an equation that is called the auxiliary or characteristic equation
of the o.d.e. (*).

Since the earlier theory indicates that any fundamental set of
solutions to (*) should have two members, the solutions to (**) may
very well provide us with the key to a general solution to (*).



Consequently, it is well worth our while to look at the solutions
to (**) in a systematic way.

Recall from your earlier algebra courses that the nature of
the solutions to the quadratic equation (**) depends on the sign of
the discriminant,

D = b2 - 4 a c.

You have two distinct real roots if D is positive, one real root of
multiplicity 2 when D is zero, and two complex roots that are
conjugates of each other if D is negative. Now it turns out that
each of these possibilities leads to a distinctly different
situation in obtaining a fundamental set of solutions to (*).
Consequently, we shall deal with each case in turn.

Case 1: b2 - 4 a c > 0

If b2 - 4 a c > 0, then the auxiliary equation (**) has
two distinct real roots, say r and s. It turns out that it is very
easy to see that the two functions y1 = er x and y2 = es x are
linearly independent solutions to (*). [That they are solutions is
a consequence of r and s being roots of the auxiliary equation.
Since the Wronskian of the two functions is W(y1,y2) = (s - r)e(r+s) x

and s - r 0, it follows that y1 and y2 are linearly independent.
What we may now conclude is this: { er x, es x } is a fundamental
set of solutions to (*) in this case, and the general solution is
given by y(x) = c1 er x + c2 es x.

Case 2: b2 - 4 a c = 0

If b2 - 4 a c = 0, then the auxiliary equation (**) has
one real root, r = -(b/2a), of multiplicity 2. This means, of
course, that the left side of the auxiliary equation actually
factors so that (**) is equivalent to a(m -(-b/2a))2 = 0.
Unfortunately, now the auxiliary equation only gives us one
solution, namely, y1 = er x. We need two linearly independent
solutions to build a fundamental set of solutions. To get a
second, linearly independent solution we must use the magic
encapsulated in the technique of

Reduction of Order:

A Useful Technique to get ’Missing’ Solutions.

If f(x) is a non-trivial solution to the homogeneous equation
(*) above, the substitution y(x) = v(x) f(x) allows us to reduce
(*) to a first order equation in v ′ . Set w = v ′ to get a first
order linear homogeneous equation. [Here, ’non-trivial’ means ’not
the zero function’.]

You’ll recall that Georges’s Notes gave you no examples
illustrating this. Now we shall see reduction of order in use,
perhaps somewhat abstractly, but still, in use.

Here we go. Set y = v er x. Then, substituting y into (*), we



obtain by doing the required differentiations that

0 = a y″ + b y ′ + c y

is equivalent to

0 = a (v″ + 2rv ′ + r2v) er x + b (v ′ + vr) er x + c v er x.

= (ar2 + br + c) v er x + (av″ + (2ar + b)v ′ ) er x.

In the last equation above, since r is a root of (**), we have
ar2 + br + c = 0, and because we actually have r = -(b/2a), the
coefficient on v ′ in the second term above is also zero.
Consequently, the mess above reduces down to this:

0 = av″ er x,

or

0 = v″,

since a ≠ 0.
This last second order differential in v can be transformed

into a first order linear homogeneous equation by means of a simple
substitution. Let w = v ′ . Then by substituting w into the
differential equation 0 = v″, we obtain w ′ = 0.

[The reduction to first order linear homogeneous is typical. The
utter, stark simplicity of w ′ = 0 is not usual, however.
Incidentally, here is a silly question: What is the integrating
factor for w ′ = 0 ???]

We may solve w ′ = 0 by simply integrating to get w = c, a
constant. Consequently, v ′ = c. Integrating one more time yields
v = cx + d, where d is a new constant. This means, finally, that
we have

y = (cx + d) er x,

or

y = c x er x + d er x,

a linear combination of the two functions er x and x er x. Observe
that the first function is our original solution and the second is
new. By computing the wronskian of these two functions, you can
see that they are linearly independent. Consequently, in this case
a fundamental set of solutions for (*) is { er x,x er x } and the
general solution is given by y(x) = c1 x er x + c2 er x.

Case 3: b2 - 4 a c < 0

If b2 - 4 a c < 0, then the auxiliary equation (**) has two



complex roots that are conjugates since a, b, and c are real
numbers. Without any loss of generality, we may assume the two
roots are r + s i and r - s i, where r and s are a pair of real
numbers. As in Case 1, you get two linearly independent solutions,
e(r + s i) x and e(r - s i) x. Unfortunately, these are not usable by us
because these are, in fact, complex-valued functions. It turns out
that Euler’s identity, ei x = cos(x) + i sin(x), bails us out.
[Note: "Euler" is pronounced "Oiler"!!] This identity connects the
complex exponential function with our old friends sine and cosine.
As a result, we can also solve the linear system,

ei x = cos(x) + i sin(x)

e-i x = cos(x) - i sin(x),

created using the oddness of sine and the evenness of cosine,
to obtain sin(x) and cos(x). When we do, we get

cos(x) = (1/2) (ei x + e-i x)

and

sin(x) = (1/2i) (ei x - e-i x).

Since sine and cosine are complex linear combinations of ei x and
e-i x above, it turns out that we can uncover two real-valued
functions y1 = er x cos(s x) and y2 = er x sin(s x) that are solutions
to (*) in this case, and they are actually linearly independent.
Consequently, in this case a fundamental set of real-valued
solutions to (*) is { er x cos(s x), er x sin(s x) }, and the general
solution is y(x) = c1 er x cos(s x) + c2 er x sin(s x).

[Exercise: Do the plug and chug to verify that y1 and y2 above are
linearly independent by computing their wronskian, and substitute
each separately into (*) to verify each is a solution. In doing
the last part, you will have to use the hypothesis that r + s i and
r - s i are roots to (**).]

At this point we have finished our guided tour to the
solutions to the second order linear homogeneous constant
coefficient equation. Here are a couple of things you must keep in
mind.

(1): To actually solve a second order constant coefficient
equation (*), you must obtain the roots to the auxiliary equation
(**) by factoring or using your old friend, the quadratic formula.

(2): To understand the solutions of the general nth order
constant coefficient equation, it really helps to read the text
carefully. The alternative is to re-invent that wheel yourself by
guessing the pattern and doing the required induction argument.
That, of course, is a fun thing to do, but given your time
constraints, it might be wiser to crack the book.


