
Georges’s DE Notes: Some Linear Second Order Stuff

Some Useful Linear Algebra Concepts

(1) Linear Combination

If f1,...,fn are functions and c1,...,cn are numbers, the
function f defined by

f(x) = c1 f1(x) + ... + cn fn(x)

is called a linear combination of f1,...,fn.

Example(s):

(a) f(x) = 3 sin(5x) - 8 cos(9x) + 32 ex

Here f is a linear combination of the functions sin(5x),
cos(9x), and ex. Of course, f is also a linear combination of the
functions 3 sin(5x), 8 cos(9x),and 32 ex !!

(b) g(x) = ax2 + bx + c

Your favorite quadratic function is merely a linear
combination of the functions x2, x, and ’1’. This is a formal
linear combination.

You will see many many more linear combinations of all sorts
of functions throughout your study of linear differential
equations. Just hold on for the ride. This construct is probably
the single most pervasive in dealing with linear DE’s. Gradually
you’ll begin to understand why.

(2) Linear Dependence

Let f1,...,fn be n functions. If there are n numbers c1,...,cn,
not all equal to zero, such that

c1 f1(x) + ... + cn fn(x) = 0 for all x,

then f1,...,fn are said to be linearly dependent.

You can paraphrase this as follows: A collection of n
functions f1,...,fn is linearly dependent if the zero function can
be expressed as a non-trivial linear combination of them. This is
of interest because the zero function can always be written as a
linear combination of any functions trivially, that is with all the
numerical coefficients c1,...,cn equal to the number 0.

(3) Linear Independence

Let f1,...,fn be n functions. If

c1 f1(x) + ... + cn fn(x) = 0

being true for all x implies that c1 = c2 =... = cn = 0, then we say
that f1,...,fn are linearly independent.



You can paraphrase this as follows: A collection of n
functions f1,...,fn is linearly independent if the zero function can
be expressed only as a trivial linear combination of them. This is
of interest because the zero function can always be written as a
linear combination of any functions trivially, that is with all the
numerical coefficients c1,...,cn equal to the number 0. When the
functions f1,...,fn are linearly independent, this is the only way
that the zero function can be written as a linear combination using
the given functions.

It doesn’t take a rocket scientist to see that the two
concepts of linear dependence and linear independence are logical
negations of each other. What makes these two concepts so very
important is that they are the keys to the matter of uniqueness of
representation for functions expressed as linear combinations of
other functions. Specifically, if the family of functions f1,...,fn
are linearly independent, then if f is a function so that

f(x) = c1 f1(x) + ... + cn fn(x)

for some numbers c1,...,cn, and if we also have

f(x) = d1 f1(x) + ... + dn fn(x)

for some numbers d1,...,dn, then we must have c1 = d1,...,cn = dn.
In short, we have a very nice sort of uniqueness that will turn out
to be exceedingly useful for us, as you will see in due time.

Example(s):

(a) Let f1(x) = 3 sin(x) - 4 cos(x), f2(x) = sin(x), and
f3(x) = cos(x). f1, f2,and f3 are linearly dependent because

1 f1(x) + (-3)f2(x) + (4)f3(x) = 0

for every real number x.

(b) On the other hand f2 and f3 above are linearly independent,
since the equation a f2(x) + b f3(x) = 0 being true for every real
number x implies that a = b = 0. Here’s why: If the equation is
true for every x, it’s true when x = 0 and when x = π/2. This
leads to an easy to solve linear system with the unique solution of
a = 0 and b = 0.

A Tool for Dealing with Linear Independence: The Wronskian.

Let f1 and f2 be two functions that are differentiable. The
Wronskian of f1 and f2 is the function W(f1,f2) defined by the
equation

f1 f2
W(f1,f2)(x) = = f1(x)f2 ′ (x) - f2(x)f1 ′ (x).

f1 ′ f2 ′

How one defines the wronskian of n functions in terms of n x n
determinants is fairly obvious.



Some Useful Facts Concerning the Wronskian and Solutions of 2nd

Order Linear Equations

(1) If y1 and y2 are two functions with W(y1,y2) ≠ 0, then y1 and y2
are linearly independent.

[In general, the converse is false. Fortunately, we mostly
will have to use this for solutions to homogeneous equations.]

(2) If y1 and y2 are solutions to the homogeneous equation

(*) y″ + a1(x) y ′ + a2(x) y = 0,

then y1 and y2 are linearly independent if, and only if

W(y1,y2) ≠ 0.

(3) If y1 and y2 are solutions to the homogeneous equation and

W(y1,y2) ≠ 0,

then every solution to (*) is a linear combination of y1 and y2,
that is, every solution y can be written in the form y = c1y1 + c2y2
for appropriate constants c1 and c2. The set {y1, y2} is called a
fundamental set of solutions to (*).

(4) If {y1, y2} is any fundamental set of solutions to (*) and yp is
any single solution to the differential equation

(**) y″ + a1(x) y ′ + a2(x) y = F(x),

then every solution to (**) is of the form

f(x) = yp(x) + c1 y1(x) + c2 y2(x).

The general solution to the corresponding homogeneous equation (*)
is sometimes called the complementary solution and denoted by yc.
In these terms, the general solution to (**) is sometimes written
as

f(x) = yp(x) + yc(x).

Reduction of Order: A Useful Technique to get ’Missing’ Solutions.

If f(x) is a non-trivial solution to the homogeneous equation
(*) above, the substitution y(x) = v(x) f(x) allows us to reduce
(*) to a first order equation in v ′ . Set w = v ′ to get a first
order linear homogeneous equation. [Here, ’non-trivial’ means ’not
the zero function’.] You will see an application of this in
Floyd’s Notes, coming up.


