
More Linear Second Order Stuff : Variation of Parameters

By contrast with the Method of Undetermined Coefficients,
which is essentially restricted to constant coefficient equations
and a small class of driving functions, the technique of variation
of parameters is quite general.

Again, we shall restrict our attention to the second order
case. To simplify matters, we shall assume the equation is
normalized so that the coefficient function on the second
derivative term is "1", the function that is constantly one. Thus,
we are considering the equation

(*) y″ + a1(x) y ′ + a2(x) y = F(x),

where the coefficient functions, a1 and a2, and the driving
function, F, are continuous.

Suppose now that we have already dealt with the corresponding
homogeneous equation,

(**) y″ + a1(x) y ′ + a2(x) y = 0,

and have in hand a fundamental set of solutions to (**), {y1, y2}.
Then, inspired by the form of the solution to the first order
linear differential equation, y ′ + a(x) y = F(x),

y(x) = [µ(x)]-1 ∫F(x)µ(x)dx + c[µ(x)]-1,

where µ is an integrating factor, we might guess that a particular
integral looks like this:

(***) yp(x) = v1(x) y1(x) + v2(x) y2(x),

where v1 and v2 are functions whose identity we shall eventually
reveal.

The reason for the guess is this. It turns out that the
function [µ(x)]-1 = (1/µ(x)) is a non-trivial solution to the
corresponding homogeneous equation, y ′ + a(x) y = 0, and the first
summand of y(x) is, in fact, yp(x). Look at its form. The
function yp consists of a product of a non-trivial solution to the
corresponding homogeneous equation and another function. Now mix
in "linear". OK??

Let’s now attack the problem of identifying v1 and v2. To do
this, we shall pretend yp is a solution to (*) and see what that
forces on us. Obviously, the first thing we might want to do is
compute the first and second derivatives of yp = v1 y1 + v2 y2.

Clearly, yp ′ = v1 y1 ′ + v1 ′ y1 + v2 y2 ′ + v2 ′ y2. Although it
is not very intuitive at this stage, it turns out that it is
desirable to have v1 ′ y1 + v2 ′ y2 = 0. This simplifies the first
derivative of yp in a critical way. A slightly more advanced
perspective on this, where (*) is re-written as a first order
linear ODE involving vector-valued functions and matrix
coefficients, reveals that v1 ′ y1 + v2 ′ y2 = 0 is a necessary
condition for yp having the form (***) to be a solution to (*).
Because we shall be thinking about this with v1 and v2 as unknown
functions, we will write this as

(****) y1 v1 ′ + y2 v2 ′ = 0.

Now if we use (****), yp ′ simplifies to

yp ′ = v1 y1 ′ + v2 y2 ′ ,



and thus,

yp″ = v1 y1″ + v2 y2″ + v1 ′ y1 ′ + v2 ′ y2 ′ .

After we substitute yp into (*) using yp ′ and yp″ as above, use
strongly the assumption that y1 and y2 are solutions to the
corresponding homogeneous equation (**), and perform a little
algebraic magic, we obtain a second equation in v1 ′ and v2 ′ :

(*****) y1 ′ v1 ′ + y2 ′ v2 ′ = F(x).

It now turns out that v1 ′ and v2 ′ have unique solutions in the
linear system consisting of equations (****) and (*****). We know
that this system has a unique solution because the determinant of
the coefficient matrix is the Wronskian, W(y1,y2), and
W(y1,y2) ≠ 0. So why is W(y1,y2) ≠ 0?? Remember this: we are
pretending that {y1, y2} is a fundamental set of solutions to (**).

Finally, after we solve the linear system consisting of (****)
and (*****), we can obtain v1 and v2 by doing simple integrations.
At the very worst, we might actually have to use the Fundamental
Theorem of Calculus.

We’ll now look at a simple example. Before we begin, I’ll
warn you that texts frequently deal with the linear system by using
Cramer’s Rule, which gives the solution neatly in terms of
determinants. Although this gives a neat theoretical solution, my
experience shows that you would be far wiser dealing with the
linear system using naive Algebra II techniques. It turns out that
Cramer’s Rule leaves you with horrors to integrate. Doing naive
algebra tends to clean up things so that when you are ready to
integrate, the integrands are not so intimidating. This is
particularly true for the small systems you will be handling here.
For larger systems such as found in Signals and Systems type
courses, you will learn appropriate linear algebra tools to deal
with the increased complexity.

Simple Example

y″ + y = tan(x)

Since the corresponding homogeneous equation is y″ + y = 0,
which has as its auxiliary equation, m2 + 1 = 0, a fundamental set
of solutions to the corresponding homogenous equation is
{ sin(x), cos(x) }.

Observe that tan(x) is not an undetermined coefficient
function. Using the technique of variation of parameters, we’d
expect to find a particular integral of the form

yp(x) = v1(x) sin(x) + v2(x) cos(x).

If yp, as above, is to be a solution to y″ + y = tan(x),
then v1 ′ and v2 ′ must satisfy the following system:

sin(x) v1 ′ + cos(x) v2 ′ = 0

cos(x) v1 ′ - sin(x) v2 ′ = tan(x)

Notice, please, that these two equations are simply (****) and
(*****) above with y1(x) = sin(x) and y2(x) = cos(x).

Now we shall solve this system using simple Algebra II
techniques. To this end, solve for v1 ′ in the first equation and



substitute the result into the second. You get the linear system

v1 ′ = -(cos(x)/sin(x)) v2 ′

-cos(x) (cos(x)/sin(x)) v2 ′ - sin(x) v2 ′ = tan(x).

Observe that the second equation just above is now a single
variable linear equation. If you multiply it by sin(x) and then
apply your favorite Pythagorean identity, sin2(x) + cos2(x) = 1,
the second equation magically becomes -v2 ′ = sin(x) tan(x).
Consequently, we get v2 ′ = -sin(x) tan(x) and v1 ′ = sin(x) after
the algebraic dust settles. This gives us the kind of linear
system we like:

v1 ′ = sin(x)

v2 ′ = -sin(x) tan(x),

where the solution is obvious.
To obtain v1 and v2, we need only integrate. Thus,

v1 = ∫sin(x)dx = -cos(x) + c,
and

v2 = - ∫sin(x)tan(x)dx = - ∫sin2(x)/cos(x)dx

= - ∫(1 - cos2(x))/cos(x)dx

= ∫cos(x) - sec(x)dx

= sin(x) - ln tan(x) + sec(x) + d.

Finally, observe that constants of integration, c and d above,
may safely be set equal to zero in order to obtain a simple
particular integral for y″ + y = tan(x). Their contribution to the
general solution may be handled by the arbitrary constants that
appear as part of yc. Just do the algebra ... . After the
algebraic dust settles, we have

yp(x) = - (ln tan(x) + sec(x) ) cos(x).

If you want the general solution, you get something
resembling

y(x) = c1 sin(x) + c2 cos(x) - (ln tan(x) + sec(x) ) cos(x).

Finally, it is time to turn to our FAQ file.

Question: "Since variation of parameters is more general than the
method of undetermined coefficients, do I really need to learn that
UC function noise??"

Answer: "No, but if you are pressed for time, like at exam time,
you might just want to have the method of UC functions in your
arsenal. For both you have to solve linear systems, but with the
method of UC functions, you don’t have to do any integrations. You
do have to be able to do differentiations correctly, though."

The noise above is dedicated to the memory of Sub-Tropical Depression #1, which
bathed us to the point where we were enisled at home in verdant, soggy Miami
Springs, thus making the generation of these notes necessary and possible.
Eventually Sub-Tropical Depression #1 moved out to sea, got its act together, and
became Tropical Depression Leslie. Oh my, tropical depression. October, 2000.


