Separation Anxiety??

Section 2.2 of Ross
Solve each of the differential equations
3. $2 r\left(s^{2}+1\right) d r+\left(r^{4}+1\right) d s=0$

After you verified that the differential equation was not exact, you recognized that the varmint is separable and re-wrote it in the form

$$
2 r\left(s^{2}+1\right)+\left(r^{4}+1\right)(d s / d r)=0
$$

in order to see whether there are any constant solutions. There aren't any. Good. Next you separated the variables and obtained

$$
\frac{2 r}{\left(r^{4}+1\right)} d r+\frac{1}{\left(s^{2}+1\right)} d s=0
$$

To integrate, you wrote

$$
\int \frac{2 r}{\left(\left(r^{2}\right)^{2}+1\right)} d r+\int \frac{1}{\left(s^{2}+1\right)} d s=C .
$$

Finally, you had the beast in hand ... $\tan ^{-1}\left(r^{2}\right)+\tan ^{-1}(s)=C$.
What's that noise in the back of the book????
Trig or Treat!! If you use the magical trigonometric identity,

$$
\tan (\alpha+\beta)=[\tan (\alpha)+\tan (\beta)] /[1-\tan (\alpha) \tan (\beta)],
$$

which you can obtain on the spot from the identities for $\sin (\alpha+\beta)$ and $\cos (\alpha+\beta)$ using a little obvious algebra, after writing

$$
\begin{equation*}
\tan \left(\tan ^{-1}\left(r^{2}\right)+\tan ^{-1}(s)\right)=\tan (C) \tag{**}
\end{equation*}
$$

you will find that the mysterious rational function of r and s will put in an appearance because $\tan \left(\tan ^{-1}\left(r^{2}\right)\right)=r^{2}$ and $\tan \left(\tan ^{-1}(s)\right)=s$. If we set $\tan (C)=c$, then (**) turns out to be

$$
\left(r^{2}+s\right) /\left(1-r^{2} s\right)=c
$$

a silly equation equivalent to the beast in the back of the book. Ugh.

