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After solving a few elenentary |inear constant coefficient ordinary
differential equations using the Laplace transform you may very well
wonder whet her the algebraic price is worth it. After all, many of the
ODE' s are actually sinple honbgeneous equati ons or have undeterm ned
coefficient driving functions. Frequently, these may be sol ved nore
readily wthout the use of the Laplace transformw th m nimal al gebraic
nmess.

So why should we bother with the Laplace transformin solving constant
coefficient ODE s?? There are a nunber of valid reasons. One of these is
that when the driving function is either piece-w se defined or periodic,
but not donesticated |like sine or cosine, the Laplace transformtruly eases
the pain of solution. Then the algebraic price of admssion is worth it.

The key to dealing with step functions, and nore generally, piece-w se
defined functions is a particularly sinple step function defined on the
real line

{ 0, if £<0

t -
ult) 1, if 0< t,
and its transl ates,
(6) = ule-a) = | 0 Forea
Ya - v a = 1, if a< t,

for a > 0. You can view a typical one of these functions imredi ately
bel ow.

¥ o= Uit

e
e
.

How t hese functions are actually defined at the junp point is not
horribly inmportant since we intend to use themin conputing sinple Laplace
transforns. W may patch the hole in whatever way is nbst convenient at
the appropriate tine.
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How do these silly functions assune a central role in conputing
Lapl ace transforns of piece-w se defined functions?? There are three parts
to a reasonabl e answer:

(A) The Laplace transformis linear;

(B) it is very easy to wite essentially any piece-w se continuous
function, f(t), defined on the positive real nunbers as a sum of
functions of the form

(1) glt-a)u,(t)

for suitable choices of nonnegative real nunbers a and functions g(t);
and

(C© the Laplace transformof each of the products appearing in (1)
above is given sinply in ternms of the Laplace transform of the function
g(t). [OF course, when g(t) is a constant, the transformis nerely a
mul tiple of the transformof the unit step.]

Nearly every elenmentary differential equations text treats (A and (O
above adequately, although the definition and notation for the unit step
functions may very sonmewhat fromtext to text with some nerely using
explicit translates of the function u above in their formulae. What none
do really well is reveal the key to (B). That is what we intend to focus
on here.

First, though, to establish notation, let us recall what (A) and (C
typically entail

g{gle) + h(e)}1(s) = L{g(e)}(s) + L{h(L)} (L)
(A Linearity: and
Li{cglt)l(s) = cLiglt)} (s)
for suitable real nunbers s whenever g and h are functions with Lapl ace

transforns and c¢c is any nunber. Mbreover, a sinple substitution in the
defining integral yields

(O Liglt-alu, ()1 (s) = e *L{g(t)} (s

for a appropriate real nunbers s, provided g is nice enough. One also
occasionally encounters the follow ng variant of (C)

(C) Lig(lu ()} (s) = e *¥L{g(t+a)} (s)

[If one does not want to store both in menory, (C) is best, for it is
easier to apply when one gets around to dealing with inverse transforns.]
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So what about (B)??

Recall, if a function f defined on the nonnegative real nunbers is
pi ece-wi se or sectionally continuous, then for each R> 0, there is a
partition of the interval [O,R], i.e., a finite set of points fromthe

i nt erval
0 =g, <ag <a <.<a,,<a,==Rr
so that f is continuous on the interiors of the sub-intervals
la,,.a.], for k =1,.,n,
and has finite one-sided limts at the endpoints. Evidently the sequence
of "junp’ points
{agl

may be either infinite or finite. For the sake of sinplici
shall restrict our attention to the case where this set is
set

y initially we
[

t
finite and we

a, = «,
How sinple does it get?? If f is given by
r,(t) for te (a.,,a), fork=1,..,n,

we may wite

provi ded that for convenience, we set
£,(t) =0.

O course we have ignored the issue of how the function is defined at the
finitely many ’bad points.

Did that go flying over your head?? Let ne show you the origin of that
tel escoping sumwi th off-on switches by giving a couple of exanples in
boring, real-tinme detail.

First, let’s deal with a sinple step function. Consider

4 , 1if 0 < £< 10
-5 , 1if 10 < £ < 20
2n , if 20 < t < 30
-1, if 30 < t .

We shall wite this function as a linear conbination of unit step
functions. The process involves witing a sequence of telescoping suns
whose summands switch on at the appropriate junp points.

r(t) =
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To begin, deal

Set

with the definition of f

£(t) = au,(t) .

in the | eft-nost

i nterval

(bserve that the equality is only valid for t’s satisfying 0 <t < 10.

At this point, we have this:

4 , 1if 0 < t£< 10 < OK here.
Flt) = -5, JEf 10 < £ < 20 Not OK: 4
2nm , 1f 20 < t < 30 Not OK: 4
-1 if 30 < ¢ Not OK: 4.

I

For values of t beyond 10 we need to alter the function on the right
side of the equal sign. An appropriate thing to do is add a suitable
multiple of the unit step function

U ()

which is 0 for each t < 10 and 1 for each t > 10.
of this function will not alter what we have already achieved in matching
the right side with the left. And what should the multiplier be?? W
shall add in the new, desired value, -5, at the sanme tine as we renove
the previously existing value, 4. This neans that the desired nultiplier
is (-5-(4)). At this stage, then, set

Why?? Adding a nmultiple

L) = au, () + (=5 = (4))u,,(0).

For values of t > 10 the right side is always -5. W actually are K in
mat ching the left and right sides for the first two intervals. |In fact a

bit of thought will reveal to you that we now have this:
4 , 1if 0 < t£< 10 - OK here.
£lE) = -5 , 1f 10 < £ < 20 - OK here.
| 2n , if 20 < £< 30 Not OK: -5
-1, 1if 30 < ¢t Not OK: -5.

For t’s larger than 20, though, we have to nmake additional adjustnents.

And NO don’t do the obvious arithnmetic yet!! There is a pattern here that

we W ll repeat, and by not doing the arithnetic you m ght hope to see it.
Since we do not want to nmess up what we have done for any t with

t < 20, but do want to make an adjustnent for t > 20, the tool to use is

the addition of a multiple of the unit step function

Uy (E)

As in the previous adjustnment, adding a nmultiple of this function wll
alter what we have already achieved in matching the right side wth the
left. And, as previously, the nultiplier should be such that we add in the
new, desired value, 2m at the sane tinme as we renove the previously

exi sting value, -5. This nmeans now that the desired nultiplier is

(2t - (-5)). At this stage, then, set

FUE) = duy(8) + (=5 - (4))u,(e) = (21 - (=5)) uy, (£) .

not
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Now for values of t > 20 the right side is always 2. Furthernore, we are
K in matching the left and right sides for the first three intervals.
Again, a bit of thought will reveal to you that we now have this:

4 , if 0 < t£< 10 - OK here.
o) = -5, 1:f 10 < £ < 20 < OK here.
2m , 1f 20 < t < 30 - OK here.
-1, 1f 30 < ¢t Not OK: 2m.

For t’s larger than 30, though, we have one additional adjustnent to do.
Since we do not want to nmess up what we have done for any t with

t < 30, but do want to nake a new value for the right side for t > 30, the

tool to use is the addition of a nmultiple of the unit step function

1,6 (£)

As in the prior cases, adding a nmultiple of this function will not alter
what we have previously achieved in matching the right and left sides. And,
as previously, the multiplier should be such that we add in the new,
desired value, -1, at the same tine as we renove the previously existing
value, 2m.  This neans now that the desired multiplier is (-1 - (2m)).
Finally, set

FUE) = aug(6) + (=5 - (4))u(6) + (21 - (=5))uye(6) + (-1 - (27) ) uyg(£) |

Evidently, for values of t > 30 the right side is always -1. Additionally,
alittle bit nore thought will reveal to you that we now have a match on
all intervals

4 , 1if 0 < t£< 10 < OK here.

_ -5 , 1if 10 < t < 20 - OK here.

H = o , if 20 < £ <30 - OK here.
-1, 1f 30 < ¢ < OK here.

Real | y?? Previously | have left the verification to you. Now | shal
actually reveal the thinking. Since the function f is piece-w se defined,
we' Il need to do sone caseworKk.

If 0O <t < 10, then

FUE) = aug(6) + (=5 = (4))uo(6) + (21 - (=5)) e (£) + (-1 - (2m) ) uyg (£)
=4(1) + (-5 - (4))(0) + (21 - (-5)) (0) + (-1 - (2m)) (0)
=4

If 10 <t < 20, then
= 4u, (t) + (=5 = (4))u,(t) = (2m = (-5))u,, (&) + (-1 - (27)) uy, (£)

My
r
|

4(1) + (-5 - (4)) (1) + (2n - (=5)) (0) + (-1 - (2=)) (0)
4 + (-5 - (4)) = -5
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If 20 <t < 30, then

FIE) = au, (£) + (=5 - (4))u,y(£) + (2m = (=5)) (&) + (-1 - (27)) uyy (£)
=4(1) + (-5 - (4)) (1) + (27 - (=5)) (1) + (-1 - (27)) (0)
=4+ (-5 - (4)) + (21 - (-5)) = 2=

If 30 <t, then

£(t) =4u, () + (-5 - (4))u, () + (27 - (=5))u,(E) + (-1 - (2m)) uy, (£)
=4(1) + (-5 - (4)) (1) = (2n - (-5)) (1) + (-1 - (2m)) (1)
=4 + (-5 -(4)) + (2n - (-5)) + (-1 - (2m)) = -1
There you have it. W wll not repeat this sort of thing in the
future. W' Il |eave the easy and tedious details to you.

Observe that the sane core ideas allowus to wite

-1 , 1f 0 < t<3
f(t) =32¢t-7 , if 3 < t<5b
3 , 1f 5 < ¢,
as
r(t) = Lluy(t) + ((2€-7) - (1)) u, () + (3 - (2t-7) ) u= ()

= -1+ (2t-6)u,(t) + (10-2¢t) u. (¢t)

very rapidly. Rapidly??? Yes, for in the previous exanple |I bel abored the
reasoni ng and showed the adjustnents while re-witing f again and agai n.
Once one understands the structure and the process of ’'reading down the
line, left toright’, the first |line above may be witten wthout much in
the way of fuss -- even when the piece-wi se defined function is not
constant on the conponent sub-intervals. [You may check this on your own
to see the tel escoping nmagic recur.]

Once one has a piece-w se defined function witten in terns of the
unit steps, conputing the Laplace transformis straightforward.

Wien we have f witten as a sinple |inear conbination of unit step
functions, as in the first exanple, and as is always the case for step
functions, the transformis nearly a no-brainer. Look. If

£(t) =4duy () + (-5 - (4))u,(e) + (21 = (-5))u, () + (-1 - (27)) uyy (L)
=4 -9u,(t) + (2n+5)u,,(t) - (1+27) u,, (L),

then, using linearity and the known transformfor the generic unit step
function, we have

L{r(L)t (s) =

4 _ %e%  (2m+5)e*%  (1+2m)e %
s s s s '



The Unit Stepping Dance Page 7 of 8

When the nmultipliers of the unit step functions are no | onger nere
constants, things becone slightly nore conplicated. Consider the case of

£(t) = -1+ (2t-6)u,(t) + (10-2¢t)u. ()

fromour second piece-wi se defined exanple. Fromthe linearity of the
transform we have inmedi ately that

L{L(t)} (s) = -L{1}(s) ~ L{(2¢c-6)u,(t)} (s) + L{(10-2¢t)u.(E)} (s).

The first summand above is an old friend, but to handle the second and
third sunmands, we shall need to put (C) fromPage 2 to work. [W could
use (C ), but since Ross’s text does not nention it, we shall avoid
applying it directly.] To save you the |abor of flipping back to the
formula in question, here it is again:

(O L{iglt-alu, ()} (s) = e Fd{g(t)} (s)

To make matters routine, we now shall denote the nmultipliers of the
unit steps in the second and third sunmands by appropriate transl ates of
functions so that we can use (C) above, thus:

L{f(e)}(s) = -L{1}(s) -+ L{g(t-3)u, ()} (s) + L{h(t-5)u ()} (s).

where g(t-3) =2t-6 and h(t-5) =10-2¢.

You need to keep firmy in mnd that the anmount of the translation for g
and h above is controlled by the index on the corresponding unit step
function.
Using (C now, we may wite
L{F(E) I (s) = -L{1}(s) + e *L{g(E)}(s) + e?L{h(t)} (s).
where g(t-3) = 2t-6 and h(t-5) = 10-2¢t.

To continue the conmputation, we need to have formulas for g(t) and
h(t). These nay be obtained al gebraically by taking the forrmulas for
g(t - 3) and h(t - 5) and replacing t uniformy usingt + 3 to undo the
translation by 3 andt + 5 to undo the translation by 5. Here we have it:

g(t) =g((t+3)-3) =2(t+3) -6 =2t
and
h(t) = h((t+5) -5) =10-2(t+5) = -2¢t.

2
H
[
3
1

~L{1}t (s) + e?*L{g(t)l(s) + e”*L{h(t)} (s)

+ e {2t} (s) - e>*d{2¢t} (s)

-3s -5s
L, 2e _ze .

s? s*

nle wle
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Here is a third, sinple exanple, with the conputation of the
transf orm done wi thout too much verbosity and only the essenti al
bookkeepi ng:

2t , if 0 < £ <3
f(t) =

le , if 3<¢t
=2t + (6-2¢t)u,(t)
bserve that we immediately wote f in ternms of unit steps. Thus,
L{r(o)(s) = 4f2cy (s) + L{(6-2L)u, (L)} (s)

= 2,/ + L{g(t-3)u,(t)} (s), where g(t-3) = 6-2¢t
o2

- 2 4 e5d{g(t) 1 (s), where g(t) = g((£+3) -3) = -2t
SA

- 2 Lesg{-2L}(s) = 2 - ezs(i).
s* 57 57

Finally, let us sumrmarize things. To obtain the Laplace transform of
a sinple piece-wi se continuous function, first wite the function in terns
of the unit step functions. This is done as a telescoping sumw th off-on
swi tches provided by unit steps whose indices have been chosen to make
changes at appropriate tines on thet line. |If the function you started
with is a step function, you should get a |linear conbination of unit steps.
In this case, using linearity, the transformis sinply the correspondi ng
I i near conbination of the transfornms of the conponent unit steps. Wen the
original function is nore conplicated, item (C) needs to be used as in the
| ast two exanples, together with linearity.

Onward, .... eMtoidl.



