10.2 Determine the chromatic number of each of the following:
(a) the Peterson Graph,
(b) the n-cube Q_{n},
(c) $\mathrm{W}_{\mathrm{n}} \cong \mathrm{C}_{\mathrm{n}}+\mathrm{K}_{1}$.

Solution:
(a) Since the Peterson Graph, PG, has a 5-cycle, $\chi(P G) \geq 3$. Since PG is 3-regular and neither an odd cycle nor a complete graph, Brooks's Theorem implies that $\chi(P G) \leq 3$. Thus, $\chi(P G)=3$. Of course if you get bored and have forgotten about Brooks's Theorem, you can always do a PG coloring with three colors yourself, as below:

(b) It turns out that it is not horribly difficult to prove by induction that your friendly n-cubes, defined recursively by $Q_{1}=K_{2}$, and for $n \geq 2, Q_{n}=Q_{n-1} x K_{2}$, are all nonempty bipartite graphs. Thus $\chi\left(Q_{n}\right)=2$ for each $n \geq 1$.
(c) Now it's time to color the wheels of fortune, the W_{n}. Let us denote the K_{1} vertex of W_{n} by w. Any coloring of W_{n} results in a coloring of the C_{n} contained within. This means that the vertices of C_{n} require at least 2 colors if n is even and at least 3 colors if n is odd. Since the vertex w is adjacent to all of the C_{n} vertices, we need an additional color for w. Hence, the chromatic number of W_{n} must be at least 3 if n is even and 4 if n is odd. On the other hand, a minimum coloring of C_{n} may be extended to a coloring of W_{n} by using one additional color. Thus, the chromatic number of W_{n} is at most 3 if n is even and 4 if n is odd. Consequently,

$$
\chi\left(W_{n}\right)= \begin{cases}3, & \text { if } n \text { is even } \\ 4, & \text { if } n \text { is odd } .\end{cases}
$$

