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_________________________________________________________________
General directions: Read each problem carefully and do exactly
what is requested. Show all your work neatly. Use complete
sentences and use notation correctly. Make your arguments and
proofs as complete as possible. Remember that what is illegible
or incomprehensible is worthless.
_________________________________________________________________
1. (15 pts.) (a) If G is a connected planar graph with 6
vertices, what can you tell me about the size of G?

If m is the size of G, then m ≤ 3(6) - 6 = 12, the size of a
maximal planar graph with 6 vertices.

(b) For which pairs of integers r and s is Kr,s planar and for
which is Kr,s nonplanar? Provide a brief explanation and/or a
plane graph drawing, as appropriate, to deal with the various
situations.

If r = 1 or s = 1, then
Kr,s is a tree, and thus planar.
If both r and s are at least
3, then Kr,s contains K3,3 and is
not planar. What is left is
the case where one of r or s
is 2 and the other is at least
2. Without loss of
generality, we may take
r = 2 and s ≥ 2. In this
case, Kr,s is planar. To see
this, let U be the partite set
with r elements and W be the
partite set with s members.
Kr,s may be displayed as a plane
graph by lining up the vertices from W vertically in a line,
placing one element of U to the left of the W vertices and the
other to the right, and then connecting the dots in the obvious
way. K2,3 above and to the right is typical.
_________________________________________________________________
2. (10 pts.) (a) Suppose that G is a bipartite graph with
partite sets U and W with U ≤ W . What does it mean to say
that U is neighborly?

U is neighborly if for each nonempty subset X of U,
X ≤ N(X) , where

N(X)
v∈ X
N(v)

is the set of vertices in G adjacent to vertices of X. Here. of
course, N(v) = { w ε V(G): vw ε E(G)}.

(b) Recall that your friendly n-cubes are defined recursively by
Q1 = K2, and for n ≥ 2, Qn = Qn-1 x K2. Do these friendly
bipartite graphs have perfect matchings?? Explain briefly.

But of course they do. The key observation is that our friendly
n-cubes are n-regular and thus have a neighborly partite set to
aid matters. [No, you do not have to show me that!]
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3. (15 pts.) (a) Show that the graph below has a strong
orientation by assigning a direction to each edge so that the
resulting digraph is strong.

You’ll find one such below
the given graph. The key: Just
take a leisurely walk and keep
track of the direction you are
walking so that you don’t violate
the orientation you are creating,
and hope there are no bridges.

(b) The graph to the left has
many strong orientations. Does
the graph have an Eulerian
orientation? Explain briefly.

No. Since G has an odd
vertex v, every orientation will

have id(v) ≠ od(v). Thus, there are no Eulerian orientations.

(c) If you were asked to give me
an example of a connected graph
which has no orientations that
are strong, what feature(s) would
you include in your example to
ensure that the example satisfies
the requirement? Why??

Be sure to include a bridge since
a connected graph has a strong
orientation if, and only if it
has no bridges.

_________________________________________________________________
4. (10 pts.) Theorem 5.17, a corollary of sorts to Menger’s
Theorem allows you to deal with the vertex connectivity of the
graph below easily. Explain briefly. [Hint: Look north-south as
well as east-west after considering δ(G).]

Since
κ(G) ≤ λ(G) ≤ δ(G) = 3, G is
at most 3-connected. If you
scan the graph carefully,
you will observe that there
are at least 3 internally
disjoint paths between every
pair of vertices.
Consequently, Theorem 5.17
implies that the graph to
the right is 3-connected.
[Yes, to really "prove" this
would be a fairly boring
task. Here you are
permitted to wave your
hands.]
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5. (15 pts.) (a) What is a clique?

A clique in a graph G is a complete subgraph of G, i.e., a
subgraph isomorphic to a Kn for some n ≥ 1.

(b) Sketch the shadow graph S(C5) of a generic 5-cycle below.
What is χ(S(C5))??

Plainly any coloring of
C5 may be extended to a
coloring of S(C5) with the
same number of colors by
assigning each primed vertex
the same color as its un-
primed twin. Thus, we have
χ(S(C5)) ≤ χ(C5) = 3. On the
other hand, C5 is a subgraph
of S(C5). Thus,
χ(S(C5)) ≥ χ(C5) = 3. So
χ(S(C5)) = 3.

[What is going on here is
true more generally, right?]

(c) How is the Grötzsch graph, which we will denote by G here,
obtained from the shadow graph of Part (b) above?? It turns out
that ω(G) = 2 and χ(G) = 4. What is the significance of this??

The Grötzsch graph is obtained from S(C5) above by adding a
vertex that is adjacent only to the primed vertices. This
ensures that the chromatic number of the Grötzsch graph is 4
while not creating any triangles since the primed vertices are
independent. The significance of this is that we now can see how
to recursively build graphs G with the difference χ(G) - ω(G) as
big as we please. Big cliques are not required for lots of
colors.
_________________________________________________________________
6. (10 pts.) Prove, by induction on the size of the graph, that
if G is a connected plane graph of order n, size m, and having r
region, then (*) n - m + r = 2.

As a basis for the induction, we note that if m = 0, 1, or 2,
then we are dealing with a tree so that n = 1, 2, or 3
respectively, and there is only 1 region. For these values,
equation (*) is valid. Suppose that m > 3, and for the induction
hypothesis, that (*) is true for connected plane graphs having
fewer than m edges. Let G be a connected plane graph with m
edges and n vertices. If G is a tree, there is only one region
and n = m + 1. In this case equation (*) is true trivially.
Thus, suppose G is not a tree. Then G has a cycle. Let e be an
edge lying on a cycle. The graph G - e is plainly a connected
plane graph with m - 1 edges and n vertices. The removal of the
edge e decreases the number of regions created by one. Thus,
from the induction hypothesis, applied to the graph G - e, we see
that (*) is true with n replaced by n, m replaced by m - 1, and r
replaced by r - 1. Thus n + (m - 1) - (r - 1) = 2, which implies
that n + m - r = 2 by doing the arithmetic. Thus, ... yadda,
yadda, yadda. [Write the formal incantation to finish the
proof.]//
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_________________________________________________________________
7. (15 pts.) (a) What is a legal (or feasible) flow in a network N ?
[Hint: Definition. ]// If N = (V, E, s, t, c) is a network, then a
legal flow on N is a function f:E → [0,∞) such that f(e) ≤ c(e)
for each edge e ε E, and

e ∈ in(v)

f(e)
e ∈ out(v)

f(e)

for each v ε V - {s,t}. Here, c:E → [0,∞) is the capacity
function.

(b) Obtain a maximum flow f in the network below, and verify the flow is a
maximum by producing a set of vertices S that produces a minimum cut. Check that
the total capacity of that cut is the same as the value of your max flow.

Start with the zero flow.

Labelling Algorithm with labels over "reached" vertices.
[We underline reached, labelled vertices to keep track of the vertex we are
scanning from. Once we are done, we copy the vertex to the scanned (from) list
below. We choose t first if it is in the neighborhood. Once we have an f-
augmenting path and slack in hand, we update the network diagram. The final
update is to the upper right.]

* s+ s+ s+ a+
1st: R: s, a, b, c, t Path : s a t

S: s, a Slack: 2 2 λ = 2

* s+ s+ b+ c+
2nd: R: s, b, c, a, t Path : s c t

S: s, b, c Slack: 3 5 λ = 3

* s+ b+
3rd: R: s, b, a

S: s, b, a R = S = {s,b,a}
Halt. Last flow is a max.

_________________________________________________________________
8. (10 pts.) Which complete bipartite graphs Kr,s are Hamiltonian and which
are not? Explain briefly. [Hint: When can you use Dirac? What is the well-known
necessary condition?]

First, all the complete bipartite graphs are connected.
Since K1,1 is essentially K2, which has no cycles, K1,1 is not
Hamiltonian. For r ≥ 2, if r = s, then the order of the graph is
2r and δ(Kr,r) = r. Consequently, we can use Dirac’s Theorem to
see that Kr,s is Hamiltonian when r = s ≥ 2. When r ≠ s, Kr,s is
not Hamiltonian. To see this, we may assume without loss of
generality that r < s. Then, if U is the r partite set of
vertices of Kr,s, then k( Kr,s - U ) = s > r = U .//


