Required Row Operation Notation

You must use the notation for row operations given below when performing row operations on matrices.

$R_{i} \leftarrow \rightarrow R_{j}$	$:$
$R_{i} \leftarrow \mathrm{kR}_{j}+R_{i}$	This denotes, "Interchange row i
with row j."	

Here is a simple example where we show how this notation is used correctly:

$$
\begin{aligned}
{\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right] } & \sim\left[\begin{array}{cc}
1 & -1 \\
0 & 3
\end{array}\right] & \sim\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] & \sim\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \sim R_{2} \leftarrow-1 R_{1}+R_{2} & R_{2} \leftarrow(1 / 3) R_{2} & R_{1} \leftarrow 1 R_{2}+R_{1}
\end{aligned}
$$

Rule on Number of Row Operations per Equivalence when actually performing a Row Reduction: Observe that there is exactly one row operation for each matrix equivalence ~. This is to be the rule. For us the only exception to this rule is to be the following: You may perform more than one operation of the type $R_{i} \leftarrow k R_{j}+R_{i}$ for a single matrix equivalence \sim in the case where you use the same pivot row j to place zeros in a particular column of other rows i. (You will never use this in performing row reductions on $2 x \mathrm{n}$ matrices.) This does not apply to the matter of merely using the tilde ~ to assert that two matrices are row equivalent.

WARNING: Failure to use this notation correctly when performing row reductions on mini-tests or examinations will result in the loss of all partial credit on the results of the "row reduction."

