1. (4 pts.) Write down the augmented and coefficient matrices for the following system of linear equations. Label each appropriately, so they can be distinguished.

$$
\begin{aligned}
3 x_{2}-7 x_{4}+x_{5} & =0 \\
-2 x_{1}-4 x_{3} & =20 \pi \\
3 x_{4}-11 x_{5} & =-6
\end{aligned}
$$

2. (6 pts.) Using complete sentences, describe the following row operations. (Don't you dare write "R" instead of "row"!!)
$\mathrm{R}_{2} \leftarrow \rightarrow \mathrm{R}_{3}:$
$R_{3} \leftarrow(-3 / 4) R_{3}:$
$\mathrm{R}_{2} \leftarrow-6 \mathrm{R}_{1}+\mathrm{R}_{2}:$
(b) Write down the matrix that results from performing the given row operation:
$\left[\begin{array}{rrr}1 & -3 & 4 \\ 2 & -7 & 0 \\ 11 & 10 & 0\end{array}\right]$
~

$$
\mathrm{R}_{2} \leftarrow \rightarrow \mathrm{R}_{3}
$$

$\left[\begin{array}{rrr}1 & -3 & 4 \\ 2 & -7 & 0 \\ 11 & 10 & 0\end{array}\right]$
$\mathrm{R}_{3} \leftarrow-11 \mathrm{R}_{1}+\mathrm{R}_{3}$
$\left[\begin{array}{rrr}1 & -3 & 4 \\ 2 & -7 & 0 \\ 11 & 10 & 0\end{array}\right]$

$$
\mathrm{R}_{2} \leftarrow(1 / 2) \mathrm{R}_{2}
$$

3. (6 pts.) Each of the following matrices is the augmented matrix of a system involving the variables $x_{1}, x_{2}, x_{3}$, etc. The matrices are in reduced row echelon form. Solve each system.
(a)

$$
\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & -3 \\
0 & 1 & 0 & 0 & 18 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -5
\end{array}\right]
$$

(b)

$$
\left[\begin{array}{rrrrr}
1 & -2 & 0 & 8 & 4 \\
0 & 0 & 1 & -7 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(c)

$$
\left[\begin{array}{rrrrr}
1 & -2 & 0 & 8 & 0 \\
0 & 0 & 1 & -7 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

4. (4 pts.) Using Gauss-Jordan reduction and the required row operation notation, obtain the matrix in reduced row echelon form that is equivalent to the given 3 x 4 matrix. There is no linear system lurking in the shadows.
$\left[\begin{array}{rrrr}3 & -6 & 0 & 0 \\ -6 & 12 & -3 & 12 \\ 1 & -2 & 1 & -4\end{array}\right]$
