1. (6 pts.) $3 x_{2}-7 x_{4}+x_{5}=0$

$$
\begin{aligned}
-2 x_{1}-4 x_{3} & =20 \pi \\
3 x_{4}-11 x_{5} & =-6
\end{aligned}
$$

(a) Write the system of linear equations above as an equivalent vector equation.
(b) Write the system of linear equations above in the form A $\mathbf{x}=\mathbf{b}$.
(c) In what sense are the equations in parts (a) and (b) equivalent to the system of linear equations at the top of the page?? (Hint: "Row Equivalent" is not the answer.)
2. (4 pts.) Using complete sentences and appropriate notation, define each of the items below.
(a) Linear Combination
(b) $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathrm{m}}\right\}$
3. (2 pts.) Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w}$, and \mathbf{x} are elements of \mathbb{R}^{8}, and we have $4(\mathbf{x}-\mathbf{v})=3 \mathbf{w}+7 \mathbf{u}$. Write \mathbf{x} as a linear combination of the remaining three vectors.
4. (2 pts.) Suppose A is a 7×4 matrix with columns $\mathbf{a}_{1}, \mathbf{a}_{2}$, \mathbf{a}_{3}, and \mathbf{a}_{4}. Can you find a vector \mathbf{b} in \mathbb{R}^{7} so that the vector equation $\mathbf{x}_{1} \mathbf{a}_{1}+\mathbf{x}_{2} \mathbf{a}_{2}+\mathrm{x}_{3} \mathbf{a}_{3}+\mathrm{X}_{4} \mathbf{a}_{4}=\mathbf{b}$ is inconsistent? Explain your answer.
5. (4 pts.) (a) Compute the matrix-vector product Ax, where
$A=\left[\begin{array}{rrrr}3 & -6 & 0 & 0 \\ -6 & 12 & -3 & 12 \\ 1 & -2 & 1 & -4\end{array}\right]$ and $\mathbf{x}=\left[\begin{array}{r}-2 \\ 3 \\ -1 \\ 2\end{array}\right]$.
$A \mathbf{x}=$
(b) It is known that $A \sim B$, where the third row of B is a zero row. Do the columns of A span \mathbb{R}^{3} ? Explain your answer.
6. (2 pts.) Using arbitrary scalars and elements of \mathbb{R}^{n}, prove that $\mathbf{c}(\mathbf{v}+\mathbf{w})=\mathbf{c v}+\mathbf{c w}$. Cite the properties of real number addition and multiplication that you use. (You may write the vectors as n-tuples horizontally.)

