1. (4 pts.)
(a) Find a parametric equation for the line through
$\mathbf{a}=\left[\begin{array}{r}-3 \\ 5\end{array}\right]$ and parallel to $\mathbf{b}=\left[\begin{array}{l}23 \\ -5\end{array}\right]$.
(b) Find a parametric equation for the line through \mathbf{a} and \mathbf{b}, where
$\mathbf{a}=\left[\begin{array}{r}-3 \\ 5\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}23 \\ -5\end{array}\right]$.
2. (6 pts.) Using complete sentences and appropriate notation, define each of the items below.
(a) Linear Combination
(b) $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathrm{m}}\right\}$
(c) Linear Independent
3. (2 pts.) Write the general solution of the equation

$$
x_{1}-6 x_{2}+8 x_{3}=25
$$

in parametric form.
4. (2 pts.) The general solution of a certain matrix equation $\mathrm{A} \mathbf{x}=\mathbf{b}$ with $\mathbf{b} \neq 0$ is given in parametric vector form as follows:
$\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{r}-3 \\ 12 \\ -5\end{array}\right]+x_{2}\left[\begin{array}{r}-5 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{r}15 \\ 0 \\ 1\end{array}\right]$, where x_{2} and x_{3} are
arbitrary real numbers. Give the solution to the corresponding homogeneous equation, $A \mathbf{x}=0$.
5. (4 pts.) Suppose A is a 5 x 3 matrix with 2 pivot elements. (a) Are the columns of A linearly independent? Explain.
(b) Does the matrix equation $A \mathbf{x}=\mathbf{b}$ have \mathbf{a} solution for every \mathbf{b} in \mathbb{R}^{5} ?? Explain.
6. (2 pts.) After asserting whether the following proposition is always true or false in at least one case, give a brief justification for or provide a counterexample to it:

If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is a linear independent set of vectors in \mathbb{R}^{5}, then $\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is also linearly independent.

