NAME:

1. (4 pts.) (a) Find a parametric equation for the line through

 $\mathbf{a} = \begin{bmatrix} -3\\ 5 \end{bmatrix}$ and parallel to $\mathbf{b} = \begin{bmatrix} 23\\ -5 \end{bmatrix}$.

(b) Find a parametric equation for the line through ${\bf a}$ and ${\bf b},$ where

 $\mathbf{a} = \begin{bmatrix} -3\\5 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 23\\-5 \end{bmatrix}$.

2. (6 pts.) Using complete sentences and appropriate notation, define each of the items below.

(a) Linear Combination

(b) Span $\{\mathbf{v}_1, \ldots, \mathbf{v}_m\}$

(c) Linear Independent

3. (2 pts.) Write the general solution of the equation

 $x_1 - 6x_2 + 8x_3 = 25$

in parametric form.

4. (2 pts.) The general solution of a certain matrix equation $A\mathbf{x} = \mathbf{b}$ with $\mathbf{b} \neq \mathbf{0}$ is given in parametric vector form as follows:

$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$		[-3]	[-5] [15]	re x_2 and x_3 are
\mathbf{x}_2	=	12 + x	$x_2 1 + x_3 $	0	
$\begin{bmatrix} \mathbf{x}_3 \end{bmatrix}$		[-5]	L O J L	1] ,whe:	re x_2 and x_3 are

arbitrary real numbers. Give the solution to the corresponding homogeneous equation, $A\mathbf{x} = \mathbf{0}$.

5. (4 pts.) Suppose A is a 5 x 3 matrix with 2 pivot elements. (a) Are the columns of A linearly independent? Explain.

(b) Does the matrix equation $A\mathbf{x} = \mathbf{b}$ have a solution for every \mathbf{b} in \mathbb{R}^5 ?? Explain.

6. (2 pts.) After asserting whether the following proposition is always true or false in at least one case, give a brief justification for or provide a counterexample to it:

If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ is a linear independent set of vectors in \mathbb{R}^5 , then $\{\mathbf{v}_2, \mathbf{v}_3\}$ is also linearly independent.