NAME:

1. (6 pts.) Using complete sentences and appropriate notation, define each of the items below.

(a) Linear Transformation

(b) Onto

(c) One-to-one

2. (2 pts.) Create two 2 x 2 matrices A and B with integer entries so that $AB \neq BA$, and perform the actual multiplications to show that AB is different from BA.

A = B		:
-------	--	---

AB = BA =

3. (2 pts.) (a) What are the dimensions of the matrix A if T is a linear transformation with $T: \mathbb{R}^{11} \to \mathbb{R}^7$ defined by the equation $T(\mathbf{x}) = A\mathbf{x}$ for each \mathbf{x} in \mathbb{R}^{11} ?

(b) What can you say about the number and location of the pivot elements of A if T is onto ${\rm I\!\!R}^7$?

MT-04/MAS3105 Page 2 of 2

4. (6 pts.)	Suppose that T:R ²	$^2 \rightarrow \mathbb{R}^3$	is a linear transformation
with	[1] [6]		0 -3
	T() = 0	and	T() = -6
	Lo] Lo]		L1] L 0].

(a) Obtain the standard matrix for the linear transformation T.

(b) Explain how you can tell T is one-to-one. Be as complete as possible.

(c) Using only the fact that T is linear and the fact that each vector $\mathbf{x} = [\mathbf{x}_1 \ \mathbf{x}_2]^T$ can be written as a linear combination of \mathbf{e}_1 and \mathbf{e}_2 in the obvious way, not that the action of T can be realized as a matrix multiplication, show how to compute $T(\mathbf{x})$. (Warning: Be very explicit concerning your use of linearity!!)

5. (2 pts.) Using the column definitions of matrix product and matrix addition, show that A(B+C) = AB + AC whenever the matrix products are defined. (**Hint**: Begin by writing $B = [b_1, \dots, b_m]$ and C = $[\mathbf{c}_1, \ldots, \mathbf{c}_m]$. Why may we assume these have the same number of columns??)

Let $\mathbf{u} = \begin{bmatrix} 1 & -2 & 3 \end{bmatrix}^T$ and $\mathbf{v} = \begin{bmatrix} a \end{bmatrix}$ 1^{T} . 6. (2 pts.) b С

(a) Compute $\mathbf{u}^{\mathrm{T}}\mathbf{v}$.

(b) Compute \mathbf{vu}^{T} .

 $\mathbf{u}^{\mathrm{T}}\mathbf{v} =$

 $\mathbf{v}\mathbf{u}^{\mathrm{T}} =$