1. (6 pts.) Using complete sentences and appropriate notation, define each of the items below.
(a) Linear Transformation
(b) Onto
(c) One-to-one
2. (2 pts.) Create two 2 x 2 matrices A and B with integer entries so that $A B \neq B A$, and perform the actual multiplications to show that $A B$ is different from $B A$.
$A=$
B $=$
$A B=$
$B A=$
3. (2 pts.) (a) What are the dimensions of the matrix A if T is a linear transformation with $T: \mathbb{R}^{11} \rightarrow \mathbb{R}^{7}$ defined by the equation $T(\mathbf{x})=A \mathbf{x}$ for each \mathbf{x} in \mathbb{R}^{11} ?
(b) What can you say about the number and location of the pivot elements of A if T is onto \mathbb{R}^{7} ?

4. (6 pts.)	Suppose that $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$
wish a linear transformation	
	$\mathrm{T}\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}6 \\ 0 \\ 0\end{array}\right] \quad$ and $\left.\quad \mathrm{T}\left(\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{r}-3 \\ -6 \\ 0\end{array}\right]$.

(a) Obtain the standard matrix for the linear transformation T.
(b) Explain how you can tell T is one-to-one. Be as complete as possible.
(c) Using only the fact that T is linear and the fact that each vector $\mathbf{x}=\left[\begin{array}{lll}\mathrm{x}_{1} & \mathrm{x}_{2}\end{array}\right]^{\mathrm{T}}$ can be written as a linear combination of \mathbf{e}_{1} and \mathbf{e}_{2} in the obvious way, not that the action of T can be realized as a matrix multiplication, show how to compute $\mathrm{T}(\mathbf{x})$. (Warning: Be very explicit concerning your use of linearity!!)
5. (2 pts.) Using the column definitions of matrix product and matrix addition, show that $A(B+C)=A B+A C$ whenever the matrix products are defined. (Hint: Begin by writing $B=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{\mathrm{m}}\right.$] and $C=\left[\mathbf{c}_{1}, \ldots, \mathbf{c}_{\mathrm{m}}\right]$. Why may we assume these have the same number of columns??)
6. (2 pts.) Let $\mathbf{u}=\left[\begin{array}{lll}1 & -2 & 3\end{array}\right]^{\mathrm{T}}$ and $\mathbf{v}=\left[\begin{array}{llll}\mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}\right]^{\mathrm{T}}$.
(a) Compute $\mathbf{u}^{\mathrm{T}} \boldsymbol{v}$.
(b) Compute $\mathbf{v u}^{\mathrm{T}}$.
$\mathbf{u}^{\mathrm{T}} \mathbf{v}=$
$\mathbf{v u}^{\mathrm{T}}=$

