1. (5 pts.) Suppose that A and B are 4 x 4 matrices with $\operatorname{det}(A)=-2$ and $\operatorname{det}(b)=3$. Using appropriate properties of the determinant, compute each of the following.
(a) $\operatorname{det}(A B)=$
(b) $\operatorname{det}\left(A^{-1}\right)=$
(c) $\operatorname{det}\left(\mathrm{B}^{\mathrm{T}}\right)=$
(d) $\operatorname{det}\left(A^{5}\right)=$
(e) $\operatorname{det}(5 A)=$
2. (5 pts.) For what value(s) of the parameter s does the following system have a unique solution, and what is the unique solution in terms of s? (For the first part, after you figure out what is going on, using a complete sentence, write your answer so that there is no ambiguity concerning your intentions.)

$$
\begin{aligned}
2 s \cdot x_{1}+3 s \cdot x_{2} & =-1 \\
4 \cdot x_{1}+3 s \cdot x_{2} & =1
\end{aligned}
$$

(a) What are A and b ?
(b) Compute adj(A).
(c) Using your results from part (b), not row reduction, compute A^{-1}.
$A^{-1}=$
4. (2 pts.) Write the recursive definition of the determinant function.

```
5. (2 pts.) Suppose the standard matrix for the linear
transformation T:\mp@subsup{\mathbb{R}}{}{2}->\mp@subsup{\mathbb{R}}{}{2}\mathrm{ is the matrix }\quadA=[\begin{array}{ll}{1}&{2}\\{3}&{4}\end{array}].
If S is a circular region with radius r = \pi, what is the area of
the region T(S) ??
Area(T(S)) =
```

