1. (5 pts.) Suppose that A and B are $4 \ge 4$ matrices with det(A) = -2 and det(b) = 3. Using appropriate properties of the determinant, compute each of the following.

(a) det(AB) =

(b) $det(A^{-1}) =$

 $(c) det(B^T) =$

(d) $det(A^5) =$

(e) det(5A) =

2. (5 pts.) For what value(s) of the parameter s does the following system have a unique solution, and what is the unique solution in terms of s? (For the first part, after you figure out what is going on, using a complete sentence, write your answer so that there is no ambiguity concerning your intentions.)

 $2s \cdot x_1 + 3s \cdot x_2 = -1$ $4 \cdot x_1 + 3s \cdot x_2 = 1$

MT-06/MAS3105 Page 2 of 2

3. (6 pts.) **Jeopardy!** Suppose that the answer to A**x** = **b** is **x** with 3 15 $\mathbf{x}_{2} = \frac{\begin{vmatrix} 3 & 15 & 0 \\ -4 & -8 & 0 \\ 3 & 25 & 5 \end{vmatrix}}{\begin{vmatrix} 3 & 0 & 0 \\ -4 & -4 & 0 \\ 3 & -5 & 5 \end{vmatrix}}$ 0

(a) What are A and **b**?

(b) Compute adj(A).

(c) Using your results from part (b), not row reduction, compute $A^{\text{-1}}.$

 A^{-1} =

4. (2 pts.) Write the recursive definition of the determinant function.

5. (2 pts.) Suppose the standard matrix for the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. If S is a circular region with radius $r = \pi$, what is the area of the region T(S) ??

Area(T(S)) =