1. (6 pts.) Define each of the following terms.
(a) $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathrm{m}}\right\}$
(b) Linearly independent
(c) Basis
2. (4 pts.) Let V be the first octant in xyz-space; that is, let

$$
V=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]: x \geq 0, y \geq 0, \quad z \geq 0\right\}
$$

Let "+" be the usual vector addition in \mathbb{R}^{3}, and let the scalar multiplication be the usual scalar multiplication in \mathbb{R}^{3}.
(a) If \mathbf{u} and \mathbf{v} are in V, is $\mathbf{u}+\mathbf{v}$ in V? Why??
(b) Find a specific vector u in V and a specific scalar co that cu is not in V. What does this imply about V?

(c) Using your basis for Nul(A), explicitly write each column of A which is not in your basis for Col(A) as a linear combination of the elements of the basis for Col(A). (3 pts.)
(d) Using your basis elements for Col(A), show the first column of B is not in Col(A). (This implies Col(A) $\neq \operatorname{Col}(B)$.
(2 pts.)

