1. (4 pts.) Using complete sentences and appropriate notation, define each of the following terms.
(a) Dimension
(b) Rank
2. (6 pts.) (a) Find the vector \mathbf{x} determined by the coordinate vector

$$
[\mathbf{x}]_{\mathrm{B}}=\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

when $B=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$, where $\mathbf{b}_{\mathbf{1}}=\left[\begin{array}{r}-3 \\ 5\end{array}\right]$ and $\mathbf{b}_{\mathbf{2}}=\left[\begin{array}{l}{[-2\rceil} \\ -5\end{array}\right]$.
x =
(b) Find the coordinate vector $[\mathbf{x}]_{B}$ for

when B is as in part (a).
(c) Obtain the change-of-basis matrix, P_{B}, from the basis B of part (a) to the standard basis in \mathbb{R}^{2}.
$\mathrm{P}_{\mathrm{B}}=$
3. (8 pts.) Suppose matrices A and B are row equivalent, where
$A=\left[\begin{array}{rrrrr}1 & -3 & 4 & -1 & 9 \\ -2 & 6 & -6 & -1 & -10 \\ -3 & 9 & -6 & -6 & -3 \\ 3 & -9 & 4 & 9 & 0\end{array}\right] \quad$ and $\quad B=\left[\begin{array}{rrrrr}1 & -3 & 0 & 5 & -7 \\ 0 & 0 & 2 & -3 & 8 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
Using this, solve the following problems.
(a) (1 pt.) $\operatorname{rank} \mathrm{A}=$
(b) (1 pt.) $\operatorname{dim}(\operatorname{Nul}(\mathrm{A}))=$
(c) (2 pt.) Obtain a basis B_{1} for $\operatorname{Col}(A)$.
$\mathrm{B}_{1}=$
(d) (2 pt.) Obtain a basis B_{2} for Row(A).

$$
\mathrm{B}_{2}=
$$

(e) (2 pts.) Obtain a basis B_{3} for Nul(A). (It might be wise to work on the back of page 1.)
$\mathrm{B}_{3}=$

Suppose now that $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$ is the linear transformation defined by $T(\mathbf{x})=A \mathbf{x}$, where A is the matrix at the top of the page.
(f) (2 pts.) If \mathbf{b} is an element of \mathbb{R}^{4} so that rank(C) $=4$, where

$$
C=\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b\right]
$$

where the $\mathbf{a}_{\mathbf{j}}$'s are the columns of A, is \mathbf{b} in $T\left(\mathbb{R}^{5}\right)$? Explain.

