NAME:

1. (4 pts.) Using complete sentences and appropriate notation, define each of the following terms.

(a) Dimension

(b) Rank

2. (6 pts.) (a) Find the vector \mathbf{x} determined by the coordinate vector

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{B} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

when $B = \{ \mathbf{b}_{1}, \mathbf{b}_{2} \}$, where $\mathbf{b}_{1} = \begin{bmatrix} -3 \\ 5 \end{bmatrix}$ and $\mathbf{b}_{2} = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$.

x =

(b) Find the coordinate vector $[\mathbf{x}]_{B}$ for

$$\mathbf{x} = \begin{bmatrix} 1\\2 \end{bmatrix},$$

when B is as in part (a).

(c) Obtain the change-of-basis matrix, $P_{\scriptscriptstyle B}$, from the basis B of part (a) to the standard basis in $I\!\!R^2.$

MT-08/MAS3105

Page 2 of 2

3. (8 pts.) Suppose matrices A and B are row equivalent, where $A = \begin{bmatrix} 1 & -3 & 4 & -1 & 9 \\ -2 & 6 & -6 & -1 & -10 \\ -3 & 9 & -6 & -6 & -3 \\ 3 & -9 & 4 & 9 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & -3 & 0 & 5 & -7 \\ 0 & 0 & 2 & -3 & 8 \\ 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$ Using this, solve the following problems. (a) (1 pt.) rank A = (b) $(1 \text{ pt.}) \quad \dim(\text{Nul}(A)) =$ (c) (2 pt.) Obtain a basis B_1 for Col(A). $B_1 =$ (d) (2 pt.) Obtain a basis B_2 for Row(A). $B_2 =$ (e) (2 pts.) Obtain a basis B_3 for Nul(A). (It might be wise to work on the back of page 1.) B₃ = Suppose now that T: $\mathbb{R}^5 \to \mathbb{R}^4$ is the linear transformation defined by $T(\mathbf{x}) = A\mathbf{x}$, where A is the matrix at the top of the page. (f) (2 pts.) If **b** is an element of \mathbb{R}^4 so that rank(C) = 4, where $C = [a_1, a_2, a_3, a_4, a_5, b],$

where the \mathbf{a}_i 's are the columns of A, is \mathbf{b} in $T(\mathbf{R}^5)$? Explain.