NAME:

1. (6 pts.) Define each of the following terms. Use complete sentences and appropriate notation.

(a) Eigenvector

(b) Eigenvalue

(c) A is similar to B

2. (8 pts.) (a) Compute the change of basis matrix, P С ← В when B and C are two ordered bases of \mathbb{R}^2 .(4 pts.) Suppose $B = \{ \mathbf{b}_1, \mathbf{b}_2 \}, \text{ with } \mathbf{b}_1 = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \text{ and } \mathbf{b}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix},$ and $C = \{ \mathbf{c}_1, \mathbf{c}_2 \}$, with $\mathbf{c}_1 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ and $\mathbf{c}_2 = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$, are the two bases in doing this.

(b)	What is	the	equation	satisfied	by	Ρ	for	all	х	in	\mathbb{R}^2	??
	(2 pts.)				$C \leftarrow$	В					

(c) How are P and P related??? (2 pts.) $C \leftarrow B$ $B \leftarrow C$

3. (6 pts.) Find the eigenvalue(s), determine the corresponding eigenspaces, and obtain a basis for each eigenspace for the following matrix. (Notation: Eigenvalue: λ ; corresponding eigenspace: E_{λ} ; corresponding basis: B_{λ} .)

	1	0	0]
A =	0	б	0	
	L 3	-9	1].