1. (4 pts.) Obtain the characteristic polynomial and eigenvalues for the following matrix.
$A=\left[\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right]$
$\mathrm{p}_{\mathrm{A}}(\lambda)=$
2. (6 pts.) The following matrix is factored in the form $A=P D P^{-1}$. Using the diagonalization theorem, list the eigenvalues of A and bases for the corresponding eigenspaces. Use B_{λ} to denote a basis for the eigenspace corresponding to the eigenvalue λ. Finally, obtain the characteristic polynomial of A. (Hint to make this easy: Do similar matrices have the same characteristic polynomials?)
$\left[\begin{array}{rrr}4 & 0 & -2 \\ 2 & 5 & 4 \\ 0 & 0 & 5\end{array}\right]=\left[\begin{array}{rrr}-2 & 0 & -1 \\ 0 & 1 & 2 \\ 1 & 0 & 0\end{array}\right] \cdot\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 4\end{array}\right] \cdot\left[\begin{array}{rrr}0 & 0 & 1 \\ 2 & 1 & 4 \\ -1 & 0 & -2\end{array}\right]$.
3. (2 pts.) Build two 2 x 2 matrices which have the same characteristic polynomials but which are not similar. Display the characteristic polynomial, and explain why the two matrices cannot be similar.
4. (4 pts.) Let $\mathrm{T}: \mathrm{P}_{2} \rightarrow \mathrm{P}_{3}$ be defined by $\mathrm{T}(\mathbf{p}(\mathrm{t}))=\mathrm{tp}(\mathrm{t})$.
(a) Verify that T is linear.
(b) Obtain the matrix for T relative to the bases \{ 1, $\left.t, t^{2}\right\}$ and $\left\{1, t, t^{2}, t^{3}\right\}$.
5. (2 pts.) Let $B=\left\{\mathbf{b}_{1}, \mathbf{b}_{\mathbf{2}}\right\}$ be a basis for a vector space V. Suppose that $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is the linear operator with
$[T]_{B}=\left[\begin{array}{rr}1 & 3 \\ 3 & -1\end{array}\right]$.
Using this information, compute $\mathrm{T}\left(3 \mathbf{b}_{1}-2 \mathbf{b}_{2}\right)$.
6. (2 pts.) The following two matrices are clearly row equivalent. Prove they are not similar. (Hint: If two matrices are similar, what is true about their eigenvalues?)
$\mathrm{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
