1. (4 pts.) Obtain the characteristic polynomial and eigenvalues for the following matrix.

 $A = \left[\begin{array}{cc} 5 & 3 \\ 3 & 5 \end{array} \right]$

 $p_{A}(\lambda) =$

2. (6 pts.) The following matrix is factored in the form $A = PDP^{-1}$. Using the diagonalization theorem, list the eigenvalues of A and bases for the corresponding eigenspaces. Use B_{λ} to denote a basis for the eigenspace corresponding to the eigenvalue λ . Finally, obtain the characteristic polynomial of A. (Hint to make this easy: Do similar matrices have the same characteristic polynomials?)

	4	0	-2		-2	0	-1		5	0	0		0	0	1	
	2	5	4	=	0	1	2	•	0	5	0	ŀ	2	1	4	
L	0	0	5 _		L 1	0	0]		LO	0	4		1	0	-2 J.	

3. (2 pts.) Build two 2 x 2 matrices which have the same characteristic polynomials but which are not similar. Display the characteristic polynomial, and explain why the two matrices cannot be similar.

4. (4 pts.) Let $T:P_2 \rightarrow P_3$ be defined by $T(\mathbf{p}(t)) = t\mathbf{p}(t)$.

(a) Verify that T is linear.

(b) Obtain the matrix for T relative to the bases { 1, t, t^2 } and { 1, t, t^2 , t^3 }.

5. (2 pts.) Let $B = \{ \mathbf{b}_1, \mathbf{b}_2 \}$ be a basis for a vector space V. Suppose that $T:V \to V$ is the linear operator with $[T]_B = \begin{bmatrix} 1 & 3 \\ 3 & -1 \end{bmatrix}$. Using this information, compute $T(3\mathbf{b}_1 - 2\mathbf{b}_2)$.

6. (2 pts.) The following two matrices are clearly row equivalent. Prove they are not similar. (Hint: If two matrices are similar, what is true about their eigenvalues?)

 $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$