1. (8 pts.) (a) Let the matrix A below act on elements of \mathbb{C}^2 . Find the eigenvalues and a basis for each eigenspace in \mathbb{C}^2 .

 $A = \begin{bmatrix} 5 & -5 \\ 1 & 1 \end{bmatrix}$

 $\begin{bmatrix} a & -b \end{bmatrix}$ so that one can write A in the form A = PCP⁻¹. (b) Now find an invertible matrix P and a matrix C of the form

2. (2 pts.) The eigenvalues of the matrix

$$\left[\begin{array}{rrr} 4 & -3 \\ 3 & 4 \end{array}\right]$$

are $\lambda = 4 \pm 3i$. Write this matrix as a product of a scaling matrix and a pure rotation. Determine the exact value θ of the rotation with $0 \le \theta \le 2\pi$. **Hint**: You will need to use the function tan⁻¹(x) to do this. Also pure rotations are matrices of the form

 $\left[\begin{array}{c} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{array}\right].$

3. (2 pts.) Obtain a unit vector \mathbf{w} in the same direction as the vector $\mathbf{v} = \begin{bmatrix} -1 & 2 & -3 \end{bmatrix}^{\mathrm{T}}$.

w =

4. (6 pts.) Let $\mathbf{u} = \begin{bmatrix} 2 & -3 & -5 & 4 \end{bmatrix}^T$. If $V = \{\mathbf{x} \in \mathbb{R}^4 : \mathbf{x} \cdot \mathbf{u} = 0\}$, then V is a subspace of \mathbb{R}^4 . (a) Obtain a basis B for V.

(b) It turns out that $V = W^{\perp}$ for a certain subspace W of \mathbb{R}^4 . Identify W. (Hint: W is the span of a certain very obvious set. What lives in that set?)

(c) Identify the subspace V^{\perp} of \mathbb{R}^4 .

^{5.(2} pts.) Using the definition of the norm in terms of the dot product and the definition of orthogonality, verify that **u** and **v** are orthogonal $\Leftrightarrow \|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.