1. (8 pts.) (a) Let the matrix A below act on elements of \mathbb{C}^{2}. Find the eigenvalues and a basis for each eigenspace in \mathbb{C}^{2}.
$A=\left[\begin{array}{rr}5 & -5 \\ 1 & 1\end{array}\right]$
(b) Now find an invertible matrix P and a matrix C of the form
$\left[\begin{array}{rr}\mathrm{a} & -\mathrm{b} \\ \mathrm{b} & \mathrm{a}\end{array}\right]$ so that one can write A in the form $A=\mathrm{PCP}^{-1}$.
2. (2 pts.) The eigenvalues of the matrix

$$
\left[\begin{array}{rr}
4 & -3 \\
3
\end{array}\right]
$$

are $\lambda=4 \pm 3 i$. Write this matrix as a product of a scaling matrix and a pure rotation. Determine the exact value θ of the rotation with $0 \leq \theta \leq 2 \pi$. Hint: You will need to use the function $\tan ^{-1}(x)$ to do this. Also pure rotations are matrices of the form

$$
\left[\begin{array}{rr}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

3. (2 pts.) Obtain a unit vector \mathbf{w} in the same direction as the vector $\mathbf{v}=\left[\begin{array}{lll}-1 & 2 & -3\end{array}\right]^{\mathrm{T}}$.
w =
4. (6 pts.) Let $\mathbf{u}=\left[\begin{array}{llll}2 & -3 & -5 & 4\end{array}\right]^{T}$. If $V=\left\{\mathbf{x} \in \mathbb{R}^{4}: \mathbf{x} \cdot \mathbf{u}=0\right\}$, then V is a subspace of \mathbb{R}^{4}. (a) Obtain a basis B for V.
(b) It turns out that $V=W^{\perp}$ for a certain subspace W of \mathbb{R}^{4}. Identify W. (Hint: W is the span of a certain very obvious set. What lives in that set?)
(c) Identify the subspace V^{\perp} of \mathbb{R}^{4}.
5.(2 pts.) Using the definition of the norm in terms of the dot product and the definition of orthogonality, verify that u and \mathbf{v} are orthogonal $\Leftrightarrow\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$.
