1. (2 pts.) Compute the orthogonal projection of [1 7] ${ }^{\mathrm{T}}$ on the line through $[-4 \quad 2]^{T}$ and the origin.

(a) Verify that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthogonal basis for \mathbb{R}^{2}.
(b) Express \mathbf{x} as a linear combination of the $u^{\prime} s$.

2. (6 pts.) It turns out that if $\mathbf{v}_{1}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\mathrm{T}}, \mathbf{v}_{2}=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\mathrm{T}}$, and $\mathbf{v}_{3}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\mathrm{T}}$, then $W=\left\{\mathbf{v}_{1}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{3}\right\}$ is a basis for \mathbb{R}^{3}. Use the Gram-Schmidt process to turn W into an orthogonal basis.
3. (4 pts.) (a) Suppose that Q is an $m \times n$ matrix. If $Q^{T} \cdot Q=I$, the $n x n$ identity matrix, what can you say about the matrix Q? What about the converse??
(b) If

$$
\mathrm{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

then one can write $A=Q R$, where Q is an orthonormal basis for the column space of A and R is a 3 x 3 invertible upper triangular matrix. Using your work from Problem 4, obtain Q and describe how you can use part (a) of this problem and your knowledge of Q to compute R. (For this last piece of the problem, you may write $R=$ some sort product involving A and a matrix closely related to Q.)

