[In Class Closed Book Portion]

Name:

Instructions: Using complete sentences and appropriate notation, either define the given term or expression, or answer the given question.

Suppose that $\langle x_n \rangle$ is an infinite sequence. What does it 1. mean to say that $\langle x_n \rangle$ is a Cauchy sequence?

2. Provide the definition of the limit superior of a sequence <x_n>.

3. Provide the definition of the limit inferior of a sequence <x_n>.

What does it mean to say that a real number 1 is a limit of 4. an infinite sequence $\langle x_n \rangle$? [Give me the mathematical, not the informal or intuitive, definition.]

What does it mean to say that $1 = \infty$ is a cluster point of 5. the infinite sequence $\langle x_n \rangle$?

6. What does it mean to say that a set U of real numbers is open??

7. What does it mean to say that a real number x is a point of closure of a set E of real numbers??

8. What does it mean to say that a collection of sets C covers a set E of real numbers.

9. How is the notion of 'closed set' defined??

10. What does it mean to say a sequence of measurable functions $< f_n >$ converges to a function f in measure?

11. Let E be a non-empty subset of ${f R}$, and suppose that $f: E \to I\!\!R$ is a function. What does it mean to say f is continuous at a point x ε E ??

12. Suppose that $\langle f_n \rangle$ is a sequence of real-valued functions defined on a non-empty set E and f is a real-valued function defined on E. What does it mean to say the sequence $\langle f_n \rangle$ converges pointwise to f on E ??

13. Suppose that $\langle f_n \rangle$ is a sequence of real-valued functions defined on a non-empty set E and f is a real-valued function defined on E. What does it mean to say the sequence $\langle f_n \rangle$ converges uniformly to f on E ??

14. Suppose that $f: E \to \mathbb{R}$ is a function with $E \subset \mathbb{R}$. What does it mean to say f is uniformly continuous on E ??

15. How is the Lebesque outer measure of a subset E of the real line defined in terms of the length of an interval l(I)??

16. How do we define the measurability of a subset E of the real line?

17. Suppose that A is a subset of the real line. What does it mean to say a function $f: A \to \mathbb{R}$ is measurable??

18. Let $f:[a,b] \to \mathbb{R}$ be a function. What does it mean to say f is of bounded variation on [a,b] ??

19. What does it mean to say something is true almost everywhere??

20. Let $f:[a,b] \to \mathbb{R}$ be a function. What does it mean to say f is absolutely continuous on [a,b] ??