Name:
Instructions: Using complete sentences and appropriate notation, either define the given term or expression, or answer the given question.

1. Suppose that $\left\langle x_{n}\right\rangle$ is an infinite sequence. What does it mean to say that $\left\langle\mathrm{x}_{\mathrm{n}}\right\rangle$ is a Cauchy sequence?
```
2. Provide the definition of the limit superior of a sequence
< }\mp@subsup{\textrm{x}}{\textrm{n}}{
```

$\overline{3 .}$ Provide the definition of the limit inferior of a sequence
$\left\langle x_{n}\right\rangle$. $\left\langle\mathrm{x}_{\mathrm{n}}>\right.$.
4. What does it mean to say that a real number 1 is a limit of an infinite sequence $\left\langle\mathrm{x}_{\mathrm{n}}\right\rangle$? [Give me the mathematical, not the informal or intuitive, definition.]
5. What does it mean to say that $1=\infty$ is a cluster point of the infinite sequence $<\mathrm{x}_{\mathrm{n}}>$?
6. What does it mean to say that a set U of real numbers is open??
7. What does it mean to say that a real number x is a point of closure of a set E of real numbers??
8. What does it mean to say that a collection of sets Covers a set E of real numbers.
9. How is the notion of 'closed set' defined??
(10. What does it mean to say a sequence of measurable functions $<f_{n}>$ converges to a function f in measure?
11. Let E be a non-empty subset of \mathbb{R}, and suppose that $f: E \rightarrow \mathbb{R}$ is a function. What does it mean to say f is continuous at a point $x \in E$? ?
12. Suppose that $\left\langle f_{n}\right\rangle$ is a sequence of real-valued functions defined on a non-empty set E and f is a real-valued function defined on E. What does it mean to say the sequence $<\mathrm{f}_{\mathrm{n}}>$ converges pointwise to f on E ??
13. Suppose that $\left\langle f_{n}\right\rangle$ is a sequence of real-valued functions defined on a non-empty set E and f is a real-valued function defined on E. What does it mean to say the sequence <f f_{n} > converges uniformly to f on E ??
(14. Suppose that $f: E \rightarrow \mathbb{R}$ is a function with $E \subset \mathbb{R}$. What does it mean to say f is uniformly continuous on E ??
15. How is the Lebesgue outer measure of a subset E of the real line defined in terms of the length of an interval l(I)??
16. How do we define the measurability of a subset E of the real line?
17. Suppose that A is a subset of the real line. What does it mean to say a function $f: A \rightarrow \mathbb{R}$ is measurable??
$\overline{\text { 18. Let } \mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R} \text { be a function. What does it mean to say f }}$ is of bounded variation on $[\mathrm{a}, \mathrm{b}]$? ?
19. What does it mean to say something is true almost everywhere??
$\overline{\text { 20. Let } \mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{R} \text { be a function. What does it mean to say f }}$ is absolutely continuous on $[\mathrm{a}, \mathrm{b}]$??

