1. (2 pts.) Let E be a non-empty subset of \mathbb{R} , and suppose that $f: E \to \mathbb{R}$ is a function. What does it mean to say f is continuous at a point x ε E ?? [Definition!! Use complete sentences.]

2. (2 pts.) Suppose that $\langle f_n \rangle$ is a sequence of real-valued functions defined on a non-empty set E and f is a real-valued function defined on E. What does it mean to say the sequence $\langle f_n \rangle$ converges pointwise to f on E ?? [Definition!! Use complete sentences.]

3. (2 pts.) Suppose that $\langle f_n \rangle$ is a sequence of real-valued functions defined on a non-empty set E and f is a real-valued function defined on E. What does it mean to say the sequence $\langle f_n \rangle$ converges uniformly to f on E ?? [Definition!! Use complete sentences.]

4. (2 pts.) Suppose that $\langle f_n \rangle$ is the sequence of real-valued functions defined on [0,1] by $f_n(x) = x^n$ for each x ε [0,1], and f is the real-valued function defined on [0,1] by f(x) = 0 for $x \neq 1$ and f(x) = 1 for x = 1. It turns out that the sequence $\langle f_n \rangle$ converges to f. Is the convergence uniform?? Explain.

5. (2 pts.) Let E be a non-empty subset of \mathbb{R} , and suppose that $f: E \to \mathbb{R}$ is a function. What does it mean to say f is uniformly continuous on E ?? [Definition!! Use complete sentences.]