Slopes \& Velocity Homework

1. Suppose an object moves in one direction along a line so that its position $\mathrm{f}(t)$ (in meters) at time t (in seconds) is given by $\mathrm{f}(t)=3 t^{2}$.
a) What is the average velocity of the object from $t=0$ to $t=3$?
b) What is the average velocity of the object from $t=0$ to $t=5$?
c) What is the average velocity of the object from $t=2$ to $t=5$?
d) What is the instantaneous velocity of the object at $\mathrm{t}=2$?
e) What is the instantaneous velocity of the object at $\mathrm{t}=5$?
2. Suppose an object moves in one direction along a line so that its position $\mathrm{f}(t)$ (in meters) at time t (in seconds) is given by $f(t)=\sqrt{t}+2$.
a) What is the average velocity of the object from $t=0$ to $t=4$?
b) What is the average velocity of the object from $t=0$ to $t=9$?
c) What is the average velocity of the object from $t=4$ to $t=25$?
d) What is the instantaneous velocity of the object at $t=9$?
e) What is the instantaneous velocity of the object at $\mathrm{t}=16$?
3. Suppose an object moves in one direction along a line so that its position $\mathrm{f}(t)$ (in meters) at time t (in seconds) is given by $f(t)=\frac{2}{t}$.
a) What is the average velocity of the object from $t=1$ to $t=3$?
b) What is the average velocity of the object from $t=1$ to $t=5$?
c) What is the average velocity of the object from $t=2$ to $t=5$?
d) What is the instantaneous velocity of the object at $t=2$?
e) What is the instantaneous velocity of the object at $t=4$?
4. $f(x)=3 x^{2}-5 x+2$
a) Find the slope of the secant line to the graph of f passing through the points at $x=2$ and $x=4$.
b) Find the slope of the secant line to the graph of f passing through the points at $x=2$ and $x=5$.
c) Find the slope of the tangent line to the graph of f at the point with $x=2$.
d) Find the slope of the tangent line to the graph of f at the point with $x=4$.
e) Find the equation (in $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form) of the tangent line to the graph of f at the point with $\mathrm{x}=2$.
f) Find the equation (in $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form) of the tangent line to the graph of f at the point with $\mathrm{x}=4$.
5. $f(x)=\frac{1}{3 x}-4$
a) Find the slope of the secant line to the graph of f passing through the points at $x=2$ and $x=4$.
b) Find the slope of the secant line to the graph of f passing through the points at $\mathrm{x}=\frac{1}{6}$ and $\mathrm{x}=\frac{1}{3}$.
c) Find the slope of the tangent line to the graph of f at the point with $x=2$.
d) Find the slope of the tangent line to the graph of f at the point with $\mathrm{x}=\frac{1}{3}$.
e) Find the equation (in $y=m x+b$ form) of the tangent line to the graph of f at the point with $x=2$.
f) Find the equation (in $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form) of the tangent line to the graph of f at the point with $\mathrm{x}=\frac{1}{3}$.
6. $f(x)=\sqrt{3 x}$
a) Find the slope of the secant line to the graph of f passing through the points at $\mathrm{x}=3$ and $\mathrm{x}=12$.
b) Find the slope of the secant line to the graph of f passing through the points at $\mathrm{x}=3$ and $\mathrm{x}=27$.
c) Find the slope of the tangent line to the graph of f at the point with $x=3$.
d) Find the slope of the tangent line to the graph of f at the point with $\mathrm{x}=12$.
e) Find the equation (in $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form) of the tangent line to the graph of f at the point with $\mathrm{x}=3$. f) Find the equation (in $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form) of the tangent line to the graph of f at the point with $\mathrm{x}=12$.

For problems 7-15, draw the tangent line to the graph of $y=f(x)$ at $x=c$. Also, for each, classify f^{\prime} (c) as positive, negative, zero, or nonexistent.

13.

14

15.

16. Line L is tangent to the curve $y=f(x)$ at the point (3,5). Find:
a) f (3)
b) f^{\prime} (3)

17. Multiple Choice. Indicate which one of the graphs below could depict a function f that has the following properties: $\mathrm{c}<0, \mathrm{f}(\mathrm{c})<0$, and $\mathrm{f}^{\prime}(\mathrm{c})<0$.

ANSWERS
1a) $9 \mathrm{~m} / \mathrm{s}$
1b) $15 \mathrm{~m} / \mathrm{s}$
1c) $21 \mathrm{~m} / \mathrm{s}$
1d) $12 \mathrm{~m} / \mathrm{s}$
1e) $30 \mathrm{~m} / \mathrm{s}$
2a) $\frac{1}{2} \mathrm{~m} / \mathrm{s}$
2b) $\frac{1}{3} \mathrm{~m} / \mathrm{s}$
2c) $\frac{1}{7} \mathrm{~m} / \mathrm{s}$
2d) $\frac{1}{6} \mathrm{~m} / \mathrm{s}$
2e) $\frac{1}{8} \mathrm{~m} / \mathrm{s}$

3a) $-\frac{2}{3} \mathrm{~m} / \mathrm{s}$
3b) $-\frac{2}{5} \mathrm{~m} / \mathrm{s}$
3c) $-\frac{1}{5} \mathrm{~m} / \mathrm{s}$
3d) $-\frac{1}{2} \mathrm{~m} / \mathrm{s}$
3e) $-\frac{1}{8} \mathrm{~m} / \mathrm{s}$
4a) 13
4b) 16
4c) 7
4d) 19
4e) $y=7 x-10$
4f) $y=19 x-46$
5a) $-\frac{1}{24}$
5b) -6
5c) $-\frac{1}{12}$
5d) -3
5e) $y=-\frac{1}{12} x-\frac{11}{3}$
5f) $y=-3 x-2$

6a) $\frac{1}{3}$
6b) $\frac{1}{4}$
6c) $\frac{1}{2}$
6d) $\frac{1}{4}$
6e) $y=\frac{1}{2} x+\frac{3}{2}$
6f) $y=\frac{1}{4} x+3$

11.
12.
13. No tangent line. f' (c) d.n.e.

16a) 5
16b) 2
14. No tangent line. f' (c) d.n.e.
17) E

