1. For each of the following, determine whether the approximation is an overestimate or underestimate of the exact area.
a) $f(\mathrm{x})=4-\mathrm{x}^{2}$ over $[0,2]$ using 4 right-endpoint rectangles.
b) $f(x)=4-x^{2}$ over $[0,2]$ using 4 left-endpoint rectangles.
c) $f(x)=\sqrt{x}$ over $[0,2]$ using 4 right-endpoint rectangles.
d) $f(\mathrm{x})=\sqrt{x}$ over $[0,2]$ using 4 left-endpoint rectangles.
e) $f(x)=\cos ^{2} x+\sin ^{2} x$ over $[0,2]$ using 4 right-endpoint rectangles.
2. The nose "cone" of a rocket is a paraboloid obtained by revolving the curve $y=\sqrt{x}, 0 \leq x \leq 5$, about the x-axis, where x is measured in feet. Estimate the volume V of the nose cone by partitioning $0 \leq x \leq 5$ into five subintervals of equal length, slicing the cone with planes perpendicular to the x-axis at the subintervals' left endpoints, constructing cylinders of height 1 based on cross sections at these points, and finding the volumes of these cylinders.

