Hyperbolic Functions II

The hyperbolic sine function, denoted sinhx and pronounced "cinch x ", is defined as

$$
\sinh x=\frac{e^{x}-e^{-x}}{2}
$$

The hyperbolic cosine function, denoted coshx and pronounced like it rhymes with "gosh", is defined as

$$
\cosh x=\frac{e^{x}+e^{-x}}{2}
$$

The remaining 4 hyperbolic functions are defined in an analogous way with the trig functions:
Hyperbolic tangent $\quad \tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
Hyperbolic cotangent $\operatorname{coth} x=\frac{\cosh x}{\sinh x}=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$
Hyperbolic secant $\quad \sec h x=\frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}}$
Hyperbolic cosecant $\csc h x=\frac{1}{\sinh x}=\frac{2}{e^{x}-e^{-x}}$

1. Prove the following:
a) $\frac{d}{d x}[\sinh x]=\cosh x$
b) $\frac{d}{d x}[\cosh x]=\sinh x$
c) $\frac{d}{d x}[\tanh x]=\sec h^{2} x$
d) $\frac{d}{d x}[\operatorname{coth} x]=-\csc h^{2} x$
e) $\frac{d}{d x}[\sec h x]=-\sec h x \tanh x$
f) $\frac{d}{d x}[\csc h x]=-\csc h x \operatorname{coth} x$
2. Use the formulas from the previous problem to find $f^{\prime}(x)$. Just differentiate; do not simplify.
a) $f(x)=\cosh \left(x^{3}\right)$
b) $f(x)=x^{2} \tanh 3 x$
c) $f(x)=\frac{x^{2}+1}{\sinh x}$
