Hyperbolic Functions II

The hyperbolic sine function, denoted sinhx and pronounced "cinch x", is defined as

 $\sinh x = \frac{e^x - e^{-x}}{2}$

The hyperbolic cosine function, denoted coshx and pronounced like it rhymes with "gosh", is defined as

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

The remaining 4 hyperbolic functions are defined in an analogous way with the trig functions:

Hyperbolic tangent
$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Hyperbolic cotangent $\coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$
Hyperbolic secant $\sec hx = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}$
Hyperbolic cosecant $\csc hx = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}$

1. Prove the following:

a)
$$\frac{d}{dx}[\sinh x] = \cosh x$$

b) $\frac{d}{dx}[\cosh x] = \sinh x$
c) $\frac{d}{dx}[\tanh x] = \sec h^2 x$
d) $\frac{d}{dx}[\coth x] = -\csc h^2 x$
e) $\frac{d}{dx}[\sec hx] = -\sec hx \tanh x$
f) $\frac{d}{dx}[\csc hx] = -\csc hx \coth x$

2. Use the formulas from the previous problem to find f'(x). Just differentiate; do not simplify.

a)
$$f(x) = \cosh(x^3)$$
 b) $f(x) = x^2 \tanh 3x$ c) $f(x) = \frac{x^2 + 1}{\sinh x}$