What equation would have to be solved to use partial fractions to antidifferentiate the following integrals? STOP before multiplying through by the LCD.

1.
$$\int \frac{3dx}{x^3(x-1)(x^2+4)(x^2+x+1)^2}$$

2.
$$\int \frac{xdx}{x(2x+1)^2(x^2+5)(x^2+1)}$$

3. Write the trig substitution used to start the problem. Stop before differentiating.

a)
$$\int \sqrt{4+x^2} \, dx$$

b)
$$\int \sqrt{4-x^2} \, dx$$

c)
$$\int \sqrt{x^2 - 4} dx$$

d)
$$\int \sqrt{4x^2 - 1} dx$$

e)
$$\int \sqrt{1-4x^2} dx$$

f)
$$\int \sqrt{4x^2 + 1} dx$$

a)
$$\int \sqrt{4 + x^2} dx$$
 b) $\int \sqrt{4 - x^2} dx$ c) $\int \sqrt{x^2 - 4} dx$ d) $\int \sqrt{4x^2 - 1} dx$ e) $\int \sqrt{1 - 4x^2} dx$ f) $\int \sqrt{4x^2 + 1} dx$ g) $\int \sqrt{4 + 9x^2} dx$ h) $\int \sqrt{4 - 9x^2} dx$ i) $\int \sqrt{4x^2 - 9} dx$

h)
$$\int \sqrt{4-9x^2} dx$$

i)
$$\int \sqrt{4x^2-9} dx$$

$$j) \int \sqrt{9x^2 - 4} dx$$

4. Which of the following integrals can be done by letting u = tanx?

(i)
$$\int \sec^3 x \tan^2 x dx$$

(ii)
$$\int \sec^4 x \tan^2 x dx$$

(i)
$$\int \sec^3 x \tan^2 x dx$$
 (ii) $\int \sec^4 x \tan^2 x dx$ (iii) $\int \sec^4 x \tan^3 x dx$ (iv) $\int \sec^3 x \tan^5 x dx$

$$dx$$
 (iv) $\int s\epsilon$

iv)
$$\int \sec^3 x \tan^5 x dx$$