Theorem: If an alternating series satisfies the hypotheses of the alternating series test, and $S$ is the sum of the series and $S$ is approximated by the $n^{\text {th }}$ partial sum $s_{n}$, then the absolute error $\left|\mathbf{S}-\mathbf{s}_{\mathbf{n}}\right|$ satisfies $\left|S-s_{n}\right| \leq a_{n+1}$.

In words, this theorem says that if you approximate the sum of a converging alternating series by its $n^{\text {th }}$ partial sum, then the maximum error that results is the $(\mathrm{n}+1)^{\text {st }}$ term.

Each of the following series converges. Approximate the sum of the series to 2 decimal place accuracy.

1. $1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+-\ldots$
2. $1-\frac{1}{2!}+\frac{1}{4!}-\frac{1}{6!}+-\ldots$
3. $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{1}{k \cdot 2^{k}}$
