1. What is wrong with the following reasoning?
$\sum_{k=1}^{\infty} \frac{1}{k+1}$ diverges because it is the harmonic series with the first term deleted.
$\sum_{k=1}^{\infty} \frac{1}{k+2}$ diverges because it is the harmonic series with the first 2 terms deleted. $\sum_{k=1}^{\infty}\left(\frac{1}{k+1}-\frac{1}{k+2}\right)$ diverges because it is the difference of divergent series.
2. $\{(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)\}_{n=1}^{+\infty}$
a) Write the first 8 terms of the sequence.
b) Determine whether the sequence converges or diverges.
3. Find $\lim _{n \rightarrow \infty}\left(1+\frac{1}{3^{2}}+\frac{1}{3^{4}}+\frac{1}{3^{6}}+\ldots+\frac{1}{3^{2 n}}\right)$
4. A series has $s_{8}=20$ and $s_{9}=25$. Find the a_{9}, the $9^{\text {th }}$ term of the series.
5. A series has $s_{n}=\frac{3 n}{2 n+1}$.
a) Find a_{n}
b) Determine if the series converges or diverges.
