1. A particle moves with acceleration $a(t)=t-2 \mathrm{~m} / \mathrm{s}^{2}$ along an s-axis and has velocity $\mathrm{v}_{0}=0 \mathrm{~m} / \mathrm{s}$ at time $t=0$. Find the displacement and distance traveled by the particle over the interval $1 \leq t \leq 5$.

Motion that occurs when an object near the Earth is imparted some initial velocity (up or down) and thereafter moves along a vertical line is called free-fall motion. The position and velocity functions for a particle in free-fall motion are

$$
s(t)=s_{0}+v_{0} t-\frac{1}{2} g t^{2} \text { and } v(t)=v_{0}-g t
$$

where g is the acceleration due to gravity, which is approximately $32 \mathrm{ft} / \mathrm{s}^{2}$ (or $9.8 \mathrm{~m} / \mathrm{s}^{2}$ if we were using metric units). Use these facts to solve the following problem.
2. A projectile is launched vertically upward from ground level with an initial velocity of 112 ft / s.
a) Find the velocity at $\mathrm{t}=3$ seconds.
b) How high will the projectile rise?
c) Find the speed of the projectile when it hits the ground.

